Advertisement

6.The Great Debate: On Intelligence and Superintelligen

阅读量:

作者:禅与计算机程序设计艺术

1.简介

基于过去几年中人工智能呈现出爆炸式的发展趋势

本文与一般的科技类文章不同,并非只是对某项技术进行详细阐述、分析和评价;相反地,则更接近于一种传播工具或理论宣传。因此,并非主要目的是向读者传授具体知识;相反地,则是希望通过科普的方式帮助大家认识该技术的基本情况。

2.基本概念术语说明

2.1 计算机智能与人工智能

在开始讨论之前,我们需要界定两个核心概念——计算机智能与人工智能。可被定义为一个系统或程序通过接收和处理来自系统内外的信息来实现智能化目标,并促进人机交互的技术手段。由此可见,这种功能支撑这一智能化发展的技术基础是硬件设备。而A.I.作为一个理论体系具有高度的抽象性,在其框架下涵盖了计算机智能以及对人类认知和行为模式的模拟。两者之间既有显著的区别也相互影响。

2.2 智能机器人

智能机器人(Intelligent Robots)基于人工智能的智能机器人(Intelligent Robots)采用了先进程度高的智能化技术。其核心配置了相应的人工智能算法和控制模块。该系统具备广泛的适用性,在工业自动化领域可实现自动化操作,在仓储物流领域可实现高效管理,在个人机器人培养领域可实现自主学习,在社会服务领域可实现精准执行。

2.3 人工神经网络

人工神经网络(Artificial Neural Networks, ANN)是由大量人工神经元通过连接形成的一种复杂的数学计算模型。该技术在人工智能领域中占据重要地位,并成为许多前沿的深度学习技术的基础框架。

3.核心算法原理及操作步骤

3.1 决策树算法

Decision tree algorithm (DTA), commonly referred to as decision tree algorithms, is a widely used classification method. Based on feature attribute values, this algorithm constructs decision trees, with each node representing a test attribute. Upon meeting a specific condition, the algorithm navigates to the corresponding child node; if not, it proceeds to the next level of testing. The process continues until a leaf node is reached, where the decision is made.

3.2 遗传算法

基于生物进化原理的遗传算法(Genetic Algorithm, GA)是一种典型的进化算法。它旨在解决复杂优化问题,并在多个领域展现出强大的适应能力和可靠性。该方法综合运用了全局搜索策略与局部优化技巧,在迭代过程中逐步逼近最优解。

3.3 模糊推理系统

该系统是一种基于模糊逻辑的技术用于模式识别,在面对具有模糊特性的输入数据时表现出良好的适应性。通过决策树模型、聚类分析以及神经网络架构等方法构建模型框架,并致力于实现较高水平的识别精度。

3.4 深度学习方法

深度学习技术(Deep Learning Techniques, DLT)是当下最流行的机器学习方案之一。该技术通过多层神经网络架构实现,并基于反向传播算法对模型参数进行优化训练。其目标是以提取数据中的复杂非线性模式和抽象特征为己任。

4.代码实例和解释说明

为了基于以上四种机器学习算法的正确性和效率的研究目标下, 笔者回顾了多个具有代表性的案例, 并通过Python语言逐一实现了这些算法.不仅提供了完整的代码示例, 并且对每个算法进行了详细解释.

4.1 决策树算法

决策树算法的步骤如下:

以下是对原文的同义改写版本

相关代码如下:

复制代码
    import numpy as np
    
    class Node(object):
    def __init__(self, data=None, label=None):
        self._data = data
        self._label = label
        self._children = []
    
    @property
    def is_leaf(self):
        return len(self._children) == 0
    
    @property
    def children(self):
        return self._children
    
    def add_child(self, node):
        self._children.append(node)
    
    def entropy(y):
    """Calculate the entropy of a distribution"""
    n = y.shape[0]
    hist = np.bincount(y) / float(n)
    return -np.sum([p * np.log2(p) for p in hist if p > 0])
    
    def information_gain(x, y, attr_index):
    """Calculate the information gain when spliting by an attribute"""
    x = np.array(x)
    y = np.array(y)
    subsets = {}
    for val in set(x[:, attr_index]):
        subset = (x[:, attr_index] == val).nonzero()[0]
        subsets[val] = (subset, y[subset])
    
    entropies = [entropy(subsets[val][1]) for val in subsets]
    weighted_entropies = sum([(len(subsets[val][0]) / float(x.shape[0])) * e 
                             for val, e in zip(subsets, entropies)])
    info_gain = entropy(y) - weighted_entropies
    return info_gain
    
    def generate_decision_tree(x, y, max_depth=float('inf'), min_samples_split=2, criterion='gini'):
    """Generate decision tree using ID3 algorithm"""
    root = Node()
    if not isinstance(criterion, str) or criterion not in ['gini', 'entropy']:
        raise ValueError("Criterion should be 'gini' or 'entropy'")
    
    if x.shape[0] < min_samples_split or depth >= max_depth:
        leaf_label = most_common_label(y)
        root._label = leaf_label
        return root
    
    best_attr_index = None
    best_info_gain = 0
    
    # Calculate information gain for each feature
    for i in range(x.shape[1]):
        ig = information_gain(x, y, i)
    
        if ig > best_info_gain:
            best_attr_index = i
            best_info_gain = ig
    
    if best_attr_index is None:
        leaf_label = most_common_label(y)
        root._label = leaf_label
        return root
    
    subtree = Node()
    for value in set(x[:, best_attr_index]):
        mask = (x[:, best_attr_index] == value).reshape(-1,)
        child = generate_decision_tree(x[mask], y[mask], depth + 1, min_samples_split, criterion)
        subtree.add_child(child)
    
    root.add_child(subtree)
    return root
    
    def predict(root, x):
    """Predict labels on new instances"""
    if root.is_leaf:
        return root._label
    else:
        feat_value = x[root._feature_idx]
        for child in root.children:
            if child._threshold <= feat_value:
                return predict(child, x)
        return root._children[-1]._label
    
    if __name__ == '__main__':
    # Load dataset
       ...
    
    # Preprocess data
       ...
    
    # Train decision tree classifier
    dt_clf = DecisionTreeClassifier()
    dt_clf.fit(X_train, Y_train)
    
    # Evaluate accuracy
    acc = dt_clf.score(X_test, Y_test)
    print('Accuracy:', acc)
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

4.2 遗传算法

遗传算法的步骤如下:

  1. 设定初始群体:通过随机方法产生一组解构成初始群体。
  2. 计算初始群体的适应值:通过计算方法确定群体中每个体的适应度并评估其总体适应性。
  3. 进行交配操作:基于一定概率选择当前群体中表现优异的个体,并生成新的子代加入到现有群体中。
  4. 设置终止条件并结束过程:当达到设定的标准时停止繁殖过程,并从最终结果中选出具有最高综合性能的最佳方案。

相关代码如下:

复制代码
    import random
    
    class Individual(object):
    def __init__(self, chromosome, fitness):
        self.chromosome = chromosome
        self.fitness = fitness
    
    class GeneticAlgorithm(object):
    def __init__(self, population_size, mutation_rate, crossover_rate):
        self.population_size = population_size
        self.mutation_rate = mutation_rate
        self.crossover_rate = crossover_rate
    
    def _select_parent(self, individuals):
        total_fitness = sum(ind.fitness for ind in individuals)
        r = random.uniform(0, total_fitness)
        current_sum = 0
        for ind in individuals:
            current_sum += ind.fitness
            if current_sum > r:
                return ind
    
    def _mutate(self, individual):
        mutated = list(individual.chromosome)
        for i in range(len(mutated)):
            if random.random() < self.mutation_rate:
                j = random.randint(0, len(mutated)-1)
                mutated[i], mutated[j] = mutated[j], mutated[i]
        return Individual(tuple(mutated), None)
    
    def _crossover(self, parent1, parent2):
        cutpoint = random.randint(0, len(parent1))
        offspring1 = parent1[:cutpoint] + parent2[cutpoint:]
        offspring2 = parent2[:cutpoint] + parent1[cutpoint:]
        return tuple((Individual(offspring1, None), Individual(offspring2, None)))
    
    def run(self, eval_func, target_accuracy):
        population = [Individual(self.generate_chromosome(), None)
                      for _ in range(self.population_size)]
        while True:
            fitnesses = [(ind, eval_func(*ind.chromosome)) for ind in population]
            sorted_pop = sorted(zip(population, fitnesses), key=lambda x: x[1].fitness, reverse=True)
    
            accuracy = sorted_pop[0][1].fitness/target_accuracy
    
            if accuracy >= 1:
                return sorted_pop[0][1].chromosome
    
            next_gen = [sorted_pop[0]]
            while len(next_gen) < self.population_size:
                parent1 = self._select_parent(sorted_pop[:-1]+sorted_pop[-1:])
                parent2 = self._select_parent(sorted_pop[:-1]+sorted_pop[-1:])
                offsprings = self._crossover(parent1, parent2)
                if random.random() < self.mutation_rate:
                    offsprings = (self._mutate(offsprings[0]), offsprings[1])
                elif random.random() < self.mutation_rate:
                    offsprings = (offsprings[0], self._mutate(offsprings[1]))
                next_gen.extend(offsprings)
            population = next_gen
    
    def generate_chromosome(self):
        pass
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

4.3 模糊推理系统

模糊推理系统的步骤如下:

  1. 数据加载:获取训练样本数据及相关规则。
  2. 数据预处理:进行标准化处理以适应规则应用的需求。
  3. 模型训练:基于现有规则库构建学习模型以实现目标功能。
  4. 模型验证:通过独立测试集对模型性能进行全面评估。
  5. 模型部署:将优化后的模型整合至系统平台为用户提供服务。

相关代码如下:

复制代码
    import numpy as np
    
    class FIS:
    def __init__(self):
        self.rules = []
    
    def load_data(self, X, rules):
        self.rules = rules
        self.variables = {rule['variable'] for rule in self.rules}
        self.values = {}
        for var in self.variables:
            self.values[var] = set(row[var] for row in X)
    
    def train(self):
        pass
    
    def infer(self, input):
        output = {}
        for rule in self.rules:
            antecedents = {k: v for k,v in input.items() if k in rule['antecedents']}
            consequent = rule['consequent']['output']
            weight = rule['consequent']['weight']
            if all(a in self.values[k] for k,a in antecedents.items()):
                if consequent in output:
                    output[consequent] += weight*input['input']
                else:
                    output[consequent] = weight*input['input']
        return output
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

4.4 深度学习方法

深度学习方法的步骤如下:

  1. 数据加载: 获取训练样本并搭建相应的数据结构
  2. 数据预处理: 实施特征工程或进行数据清洗以准备好输入输出变量
  3. 模型构建: 构建不同类型的模型架构并配置优化的超参数设置
  4. 模型训练: 借助优化算法逐步更新权重参数
  5. 模型评估: 通过测试集验证和评估模型性能
  6. 模型应用: The model is deployed in a production environment to ensure stable operation and optimal performance

相关代码如下:

复制代码
    from sklearn import datasets
    from keras.models import Sequential
    from keras.layers import Dense
    
    # Load iris dataset
    iris = datasets.load_iris()
    
    # Split into training and test sets
    indices = np.arange(len(iris.data))
    np.random.shuffle(indices)
    X_train = iris.data[indices][:100]
    Y_train = iris.target[indices][:100]
    X_test = iris.data[indices][-100:]
    Y_test = iris.target[indices][-100:]
    
    # Build model
    model = Sequential()
    model.add(Dense(16, activation='relu', input_dim=4))
    model.add(Dense(3, activation='softmax'))
    
    # Compile model
    model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    
    # Fit model
    history = model.fit(X_train, Y_train, epochs=100, verbose=0)
    
    # Evaluate model
    loss, accuracy = model.evaluate(X_test, Y_test)
    print('Test accuracy:', accuracy)
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

全部评论 (0)

还没有任何评论哟~