Advertisement

MMDetction之配置文件:Faster RCNN resnet50 without FPN

阅读量:

官方提供的配置文件均遵循FPN架构;鉴于此,若尝试上传不含FPN架构的配置文件,则目前实验结果仍处于测试阶段。

复制代码
 # faster rcnn caffe dc5.py

    
 # model settings
    
 norm_cfg = dict(type='BN', requires_grad=False)
    
 model = dict(
    
     type='FasterRCNN',
    
     data_preprocessor=dict(
    
     type='DetDataPreprocessor',
    
     mean=[103.530, 116.280, 123.675],
    
     std=[1.0, 1.0, 1.0],
    
     bgr_to_rgb=False,
    
     pad_size_divisor=32),
    
     backbone=dict(
    
     type='ResNet',
    
     depth=50,
    
     num_stages=4,
    
     strides=(1, 2, 2, 1),
    
     dilations=(1, 1, 1, 2),
    
     out_indices=(3, ),
    
     frozen_stages=1,
    
     norm_cfg=norm_cfg,
    
     norm_eval=True,
    
     style='caffe',
    
     init_cfg=dict(
    
         type='Pretrained',
    
         checkpoint='open-mmlab://detectron2/resnet50_caffe')),
    
     rpn_head=dict(
    
     type='RPNHead',
    
     in_channels=2048,
    
     feat_channels=2048,
    
     anchor_generator=dict(
    
         type='AnchorGenerator',
    
         scales=[2, 4, 8, 16, 32],
    
         ratios=[0.5, 1.0, 2.0],
    
         strides=[16]),
    
     bbox_coder=dict(
    
         type='DeltaXYWHBBoxCoder',
    
         target_means=[.0, .0, .0, .0],
    
         target_stds=[1.0, 1.0, 1.0, 1.0]),
    
     loss_cls=dict(
    
         type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
    
     loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
    
     roi_head=dict(
    
     type='StandardRoIHead',
    
     bbox_roi_extractor=dict(
    
         type='SingleRoIExtractor',
    
         roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
    
         out_channels=2048,
    
         featmap_strides=[16]),
    
     bbox_head=dict(
    
         type='Shared2FCBBoxHead',
    
         in_channels=2048,
    
         fc_out_channels=1024,
    
         roi_feat_size=7,
    
         num_classes=80,
    
         bbox_coder=dict(
    
             type='DeltaXYWHBBoxCoder',
    
             target_means=[0., 0., 0., 0.],
    
             target_stds=[0.1, 0.1, 0.2, 0.2]),
    
         reg_class_agnostic=False,
    
         loss_cls=dict(
    
             type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
    
         loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
    
     # model training and testing settings
    
     train_cfg=dict(
    
     rpn=dict(
    
         assigner=dict(
    
             type='MaxIoUAssigner',
    
             pos_iou_thr=0.7,
    
             neg_iou_thr=0.3,
    
             min_pos_iou=0.3,
    
             match_low_quality=True,
    
             ignore_iof_thr=-1),
    
         sampler=dict(
    
             type='RandomSampler',
    
             num=256,
    
             pos_fraction=0.5,
    
             neg_pos_ub=-1,
    
             add_gt_as_proposals=False),
    
         allowed_border=0,
    
         pos_weight=-1,
    
         debug=False),
    
     rpn_proposal=dict(
    
         nms_pre=12000,
    
         max_per_img=2000,
    
         nms=dict(type='nms', iou_threshold=0.7),
    
         min_bbox_size=0),
    
     rcnn=dict(
    
         assigner=dict(
    
             type='MaxIoUAssigner',
    
             pos_iou_thr=0.5,
    
             neg_iou_thr=0.5,
    
             min_pos_iou=0.5,
    
             match_low_quality=False,
    
             ignore_iof_thr=-1),
    
         sampler=dict(
    
             type='RandomSampler',
    
             num=512,
    
             pos_fraction=0.25,
    
             neg_pos_ub=-1,
    
             add_gt_as_proposals=True),
    
         pos_weight=-1,
    
         debug=False)),
    
     test_cfg=dict(
    
     rpn=dict(
    
         nms=dict(type='nms', iou_threshold=0.7),
    
         nms_pre=6000,
    
         max_per_img=1000,
    
         min_bbox_size=0),
    
     rcnn=dict(
    
         score_thr=0.05,
    
         nms=dict(type='nms', iou_threshold=0.5),
    
         max_per_img=100)))

这两个是不带fpn,找了半天。

全部评论 (0)

还没有任何评论哟~