RCNN(五):Ubuntu 15.04 配置Faster RCNN
该文档介绍了如何在git上安装和配置Faster R-CNN项目,包括软件依赖项(如Python、Cython、PyTorch等)和硬件要求(如GPU内存)。具体步骤包括安装必要的软件包、配置Caffe和pycaffe、下载预训练模型以及运行演示脚本。文档还提到了处理CUDA安装问题和修改Makefile配置的注意事项。
项目github地址:https://github.com/rbgirshick/py-faster-rcnn
本文对git上的相关内容进行了翻译工作,并对可能遇到的常见问题做出了修改建议。
关于CUDA、CUDNN等软件的安装问题,请参考:<>
Requirements: software
sudo apt-get install git cython python-opencv
sudo pip install cython easydict
Requirements: hardware
- For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g.Titan, K20, K40, …) with at least 3G of memory suffices
- For training Fast R-CNN with VGG16, you’ll need a K40 (~11G of memory)
- For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)
Installation
1.Clone the Faster R-CNN repository
#Make sure to clone with --recursive
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
2.Build the Cython modules
cd $FRCN_ROOT/lib
make
注意,如果在安装CUDA时总是提示找不到CUDA库文件,可以将setup.py中的所有CUDA[lib64]替换为CUDA[lib],例如将所有出现的CUDA[lib64]替换为CUDA[lib]。
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import os
from os.path import join as pjoin
from setuptools import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import subprocess
import numpy as np
def find_in_path(name, path):
"Find a file in a search path"
# Adapted fom
# http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
for dir in path.split(os.pathsep):
binpath = pjoin(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None
def locate_cuda():
"""Locate the CUDA environment on the system
Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.
Starts by looking for the CUDAHOME env variable. If not found, everything
is based on finding 'nvcc' in the PATH.
"""
# first check if the CUDAHOME env variable is in use
if 'CUDAHOME' in os.environ:
home = os.environ['CUDAHOME']
nvcc = pjoin(home, 'bin', 'nvcc')
else:
# otherwise, search the PATH for NVCC
default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin')
nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path)
if nvcc is None:
raise EnvironmentError('The nvcc binary could not be '
'located in your $PATH. Either add it to your path, or set $CUDAHOME')
home = os.path.dirname(os.path.dirname(nvcc))
cudaconfig = {'home':home, 'nvcc':nvcc,
'include': pjoin(home, 'include'),
'lib': pjoin(home, 'lib')}
for k, v in cudaconfig.iteritems():
if not os.path.exists(v):
raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v))
return cudaconfig
CUDA = locate_cuda()
# Obtain the numpy include directory. This logic works across numpy versions.
try:
numpy_include = np.get_include()
except AttributeError:
numpy_include = np.get_numpy_include()
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)
ext_modules = [
Extension(
"utils.cython_bbox",
["utils/bbox.pyx"],
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
include_dirs = [numpy_include]
),
Extension(
"nms.cpu_nms",
["nms/cpu_nms.pyx"],
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
include_dirs = [numpy_include]
),
Extension('nms.gpu_nms',
['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'],
library_dirs=[CUDA['lib']],
libraries=['cudart'],
language='c++',
runtime_library_dirs=[CUDA['lib']],
# this syntax is specific to this build system
# we're only going to use certain compiler args with nvcc and not with
# gcc the implementation of this trick is in customize_compiler() below
extra_compile_args={'gcc': ["-Wno-unused-function"],
'nvcc': ['-arch=sm_35',
'--ptxas-options=-v',
'-c',
'--compiler-options',
"'-fPIC'"]},
include_dirs = [numpy_include, CUDA['include']]
),
Extension(
'pycocotools._mask',
sources=['pycocotools/maskApi.c', 'pycocotools/_mask.pyx'],
include_dirs = [numpy_include, 'pycocotools'],
extra_compile_args={
'gcc': ['-Wno-cpp', '-Wno-unused-function', '-std=c99']},
),
]
setup(
name='fast_rcnn',
ext_modules=ext_modules,
# inject our custom trigger
cmdclass={'build_ext': custom_build_ext},
)
note:如果提示G++ 或是C++缺少函数,请将gcc升级为4.9.2版本,如下操作:
$ cd /usr/bin
$ sudo rm gcc
$ sudo ln -s gcc-4.9 gcc
$ sudo rm g++
$ sudo ln -s g++-4.9 g++
请按照以下步骤构建Caffe和pycaffe:首先将之前配置好的Caffe的Makefile.config复制到caffe-fast-rcnn文件夹中,并参考<>进行调整。在构建过程中设置WITH_PYTHON_LAYER := 1,然后进行编译。
cd $FRCN_ROOT/caffe-fast-rcnn
sudo make -j8
sudo make pycaffe
note:一定要加sudo 不然可能会提示权限不够。
4.Download pre-computed Faster R-CNN detectors
cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh
下载速度可能较慢。我们可以通过打开fetch_faster_rcnn_models.sh获取下载链接,随后使用迅雷等下载工具进行下载,将下载的文件放置于data目录后进行解压。
Demo
cd $FRCN_ROOT
./tools/demo.py
note:默认演示的是系统自带的图片,当然我们也可以修改成自己的图片。
1.将我们自己的图片放到data/demo文件夹下面
2.将tools下的demo.py
im_names = ['000456.jpg', '000542.jpg', '001150.jpg','001763.jpg', '004545.jpg']
在上面添加我们自己图片的名称就可以了。

测试集验证
参考如下博文:<>
