Advertisement

第J3-1周:DenseNet算法 实现乳腺癌识别

阅读量:

本文来自🔗365天深度学习训练营的深度学习训练营学习笔记博客由K同学啊(小K学长)承接辅导与项目定制

当前的开发环境包括以下配置:
操作系统版本为Windows 10;
编程语言版本为Python 3.9.13;
开发工具是Jupyter Notebook平台;
深度学习框架配置使用了PyTorch框架版本号2.3.0,并行计算库安装状态为CPU模式;
其他相关软件包包括torchvision版本号0.18.0,并行计算库安装状态为CPU模式

一、前言
本文旨在探讨深度学习技术在医学领域的潜在应用前景。作为女性中最常见的妇科恶性肿瘤之一, 乳腺癌在全球范围内具有较高的发病率, 其中IDC(浸润性导管癌)占比较高, 是临床诊断中的重要研究方向之一。科学区分不同类型的乳腺癌对于临床诊疗具有重要意义, 相关研究可有效提升诊断效率并优化治疗方案的选择。我们的研究数据集基于40毫米分辨率下的完整载玻片切片图像库构建而成

在这里插入图片描述

二、前期准备
1、设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

复制代码
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets
    import os,PIL,pathlib,warnings
    import torch.nn.functional as F
    
    warnings.filterwarnings("ignore")             #忽略警告信息
    
    
    python
复制代码
    # 我这里是CPU
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device
    
    
    python

代码输出:

复制代码
>     device(type='cpu')
>  
>  
>     
>  
>       
>  
>

2、导入数据

复制代码
    # 导入数据
    data_dir='./J3-1/'
    data_dir=pathlib.Path(data_dir)
    
    data_paths=list(data_dir.glob('*'))
    classNames=[str(path).split('\ ')[1] for path in data_paths]
    classNames
    
    
    python

代码输出:

复制代码
>     ['0', '1']
>  
>  
>     
>  
>       
>  
>
复制代码
    num_classes=len(classNames)
    num_classes
    
    
    python

代码输出:

复制代码
>     2
>  
>  
>     
>  
>       
>  
>
复制代码
    train_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]
    )
    ])
     
    test_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]
    )
    ])
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/pfNT92cXW0Jqy5LezF1EYZHBxdsS.png)
复制代码
    total_data = datasets.ImageFolder(data_dir,transform = train_transforms)
    total_data
    
    
    python

代码输出:

复制代码
>     Dataset ImageFolder
>         Number of datapoints: 13403
>         Root location: J3-1
>         StandardTransform
>     Transform: Compose(
>                    Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
>                    RandomHorizontalFlip(p=0.5)
>                    ToTensor()
>                    Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
>                )
>  
>  
>     
>  
>     ![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/EvskNhjLiTPVlSxd4oBa9Uz5R7fm.png)
>  
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>  
>
复制代码
    total_data.class_to_idx
    
    
    python

代码输出:

复制代码
>     {'0': 0, '1': 1}
>  
>  
>     
>  
>       
>  
>

3、划分数据集

复制代码
    # 划分数据集
    train_size = int(0.8 * len(total_data))
    test_size  = len(total_data) - train_size
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
    print(train_dataset)
    print(test_dataset)
     
    batch_size = 8
     
    train_dl = torch.utils.data.DataLoader(train_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        #num_workers=1
                                       )
    test_dl = torch.utils.data.DataLoader(test_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        #num_workers=1
                                       )
     
    for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/6rPnVQCLmuzpSyKoNU2tdDT17c0q.png)

代码输出:

复制代码
>     <torch.utils.data.dataset.Subset object at 0x0000024D533D34F0>
>     <torch.utils.data.dataset.Subset object at 0x0000024D533D3EB0>
>     Shape of X [N, C, H, W]:  torch.Size([8, 3, 224, 224])
>     Shape of y:  torch.Size([8]) torch.int64
>  
>  
>     
>  
>       
>       
>       
>       
>  
>

三、 搭建网络模型

复制代码
    from collections import OrderedDict
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    python

1、DenseLayer模块
self.add_module()函数用于向类中添加一个子模块。在这段代码中, self.add_module(‘name’,module)被用于将不同的模块添加到 DenseLayer 类中。这些模块可以是任何继承自 nn.Modu1e的子类,例如批标准化层(nn.BatchNorm2d)、ReLU 活函数(nn.ReLu)、卷积层(nn.conv2d)等。
该函数的参数包括一个字符串’name’,用于给该模块命名,以及一个模块实例 module,用于表示要添加的模块对象。在代码中,每个模块都按顺序添加到DenseLayer类中。
通过使用 self.add_module()函数,这些子模块被存储在 DenseLayer类的内部,成为该类的属性。这样,在类的其他方法中,可以通过引用这些属性来访问和操作这些模块,例如在forward()方
法中使用 super().forward(x)调用父类模块的前向传播方法。总之,self.add_module()函数的作用是将子模块添加到类中,并为这些模块提供属性名以便后续引用和操作。

复制代码
    # BN+ReLU+1x1Conv+BN+ReLU+3x3Conv结构,最后也加入dropout层以用于训练过程
    class DenseLayer(nn.Sequential):
    '''Basic unit of DenseBlock (using bottleneck layer)'''
    def __init__(self,in_channel,growth_rate,bn_size,drop_rate):
        super(DenseLayer,self).__init__()
        self.add_module('norm1',nn.BatchNorm2d(in_channel))
        self.add_module('relu1',nn.ReLU(inplace=True))
        self.add_module('conv1',nn.Conv2d(in_channel, bn_size*growth_rate,kernel_size=1,stride=1,bias=False))
        
        self.add_module('norm2',nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module('relu2',nn.ReLU(inplace=True))
        self.add_module('conv2',nn.Conv2d(bn_size*growth_rate,growth_rate,kernel_size=3,stride=1,padding=1,bias=False))
        
        self.drop_rate = drop_rate
    
    def forward(self,x):
        new_features =super(DenseLayer,self).forward(x)
        if self.drop_rate>0:
            new_features = F.dropout(new_features,p=self.drop_rate,training=self.training)
        return torch.cat([x,new_features],1)
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/0tRqzK9D3mZnNp5EFwrSJvlT6csb.png)

2、DenseBlock模块

复制代码
    # 内部是密集连接方式(输入特征数线性增长)
    class DenseBlock(nn.Sequential):
    def __init__(self,num_layers,in_channel,bn_size,growth_rate,drop_rate):
        super(DenseBlock,self).__init__()
        for i in range(num_layers):
            layer = DenseLayer(in_channel+i*growth_rate,growth_rate,bn_size,drop_rate)
            self.add_module('denselayer%d'%(i+1,),layer)
    
    
    python

3、Transition模块

复制代码
    # 实现Transition层,主要是一个卷积层和一个池化层
    '''Transition layer between two adjacent DenseBlock''' 
    class Transition(nn.Sequential):
    def __init__(self,in_channel,out_channel):
        super(Transition,self).__init__()
        self.add_module('norm',nn.BatchNorm2d(in_channel))
        self.add_module('relu',nn.ReLU(inplace=True))
        self.add_module('conv',nn.Conv2d(in_channel,out_channel,kernel_size=1,stride=1,bias=False))
        self.add_module('pool',nn.AvgPool2d(2,stride=2))
    
    
    python

4、构建DenseNet
nn.Sequential 被称作PyTorch中的一个模型容器,在构建神经网络时 被广泛用于 按照给定的顺序依次执行一系列神经网络模块(layers)。
OrderedDict 被定义为Python中的一种有序字典数据结构,在神经网络中 常用于 保持元素添加的顺序。

复制代码
    # 实现DenseNet网络
    # DenseNet-BC model
    class DenseNet(nn.Module):
    def __init__(self,growth_rate=32,block_config=(6,12,24,16),init_channel=64,bn_size=4,compression_rate=0.5,drop_rate=0,num_classes=1000):
        """
        :param growth_rate:(int) number of filters used in DenseLayer.'k' in the paper
        :param block_config:(list of 4 ints) number of layers in eatch DenseBlock
        :param num_init_features:(int) number of filters in the first Conv2d
        :param bn_size:(int) the factor using in the bottleneck layer
        :param compression_rate: (float) the compression rate used in Transition Layer
        :param drop_rate:(float) the drop rate after each DenseLayer
        :param num_classes:(int) number of classes for classification
        """
        super(DenseNet,self).__init__()
        # first Conv2d
        self.features =nn.Sequential(OrderedDict([
            ('conv0',nn.Conv2d(3,init_channel,kernel_size=7,stride=2,padding=3,bias=False)),
            ('norm0',nn.BatchNorm2d(init_channel)),
            ('relu0',nn.ReLU(inplace=True)),
            ('pool0',nn.MaxPool2d(3,stride=2,padding=1))
        ]))
        
        # DenseBlock
        num_features =init_channel
        for i,num_layers in enumerate(block_config):
            block=DenseBlock(num_layers,num_features,bn_size,growth_rate,drop_rate)
            self.features.add_module('denseblock%d'%(i+1),block)
            num_features += num_layers*growth_rate
            if i != len(block_config)-1:
                transition = Transition(num_features,int(num_features*compression_rate))
                self.features.add_module('transition%d'%(i+1),transition)
                num_features =int(num_features*compression_rate)
        
        
        # final bn+ReLU
        self.features.add_module('norm5',nn.BatchNorm2d(num_features))
        self.features.add_module('relu5',nn.ReLU(inplace=True))
        
        #分类层
        #classification layer
        self.classifier =nn.Linear(num_features,num_classes)
        
        #参数初始化
        #params initialization
        for m in self.modules():
            if isinstance(m,nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m,nn.BatchNorm2d):
                nn.init.constant(m.bias,0)
                nn.init.constant(m.weight,1)
            elif isinstance(m,nn.Linear):
                nn.init.constant_(m.bias,0)
                                 
    def forward(self,x):
        x=self.features(x)
        x=F.avg_pool2d(x,7,stride=1).view(x.size(0),-1)
        x=self.classifier(x)
        return x
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/wKuhkVncPmjSJoptQOACszaE8gH6.png)

5、构建densenet121

复制代码
    device ="cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
    
    densenet121=DenseNet(init_channel=64,
                     growth_rate=32,
                     block_config=(6,12,24,16),
                     num_classes=len(classNames))
    
    model = densenet121.to(device)
    model
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/ZKF8JYxaQr1A4GMHD5oWqXukBeIf.png)

代码输出:

Using cpu device

复制代码
>     DenseNet(
>       (features): Sequential(
>         (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
>         (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>         (relu0): ReLU(inplace=True)
>         (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
>         (denseblock1): DenseBlock(
>           (denselayer1): DenseLayer(
>             (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer2): DenseLayer(
>             (norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer3): DenseLayer(
>             (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer4): DenseLayer(
>             (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer5): DenseLayer(
>             (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer6): DenseLayer(
>             (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>         )
>         (transition1): Transition(
>           (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>           (relu): ReLU(inplace=True)
>           (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>           (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
>         )
>         (denseblock2): DenseBlock(
>           (denselayer1): DenseLayer(
>             (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer2): DenseLayer(
>             (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer3): DenseLayer(
>             (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer4): DenseLayer(
>             (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer5): DenseLayer(
>             (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer6): DenseLayer(
>             (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer7): DenseLayer(
>             (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer8): DenseLayer(
>             (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer9): DenseLayer(
>             (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer10): DenseLayer(
>             (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer11): DenseLayer(
>             (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer12): DenseLayer(
>             (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>         )
>         (transition2): Transition(
>           (norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>           (relu): ReLU(inplace=True)
>           (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
>           (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
>         )
>         (denseblock3): DenseBlock(
>           (denselayer1): DenseLayer(
>             (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer2): DenseLayer(
>             (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer3): DenseLayer(
>             (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer4): DenseLayer(
>             (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer5): DenseLayer(
>             (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer6): DenseLayer(
>             (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer7): DenseLayer(
>             (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer8): DenseLayer(
>             (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer9): DenseLayer(
>             (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer10): DenseLayer(
>             (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer11): DenseLayer(
>             (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer12): DenseLayer(
>             (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer13): DenseLayer(
>             (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer14): DenseLayer(
>             (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer15): DenseLayer(
>             (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer16): DenseLayer(
>             (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer17): DenseLayer(
>             (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer18): DenseLayer(
>             (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer19): DenseLayer(
>             (norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer20): DenseLayer(
>             (norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer21): DenseLayer(
>             (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer22): DenseLayer(
>             (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer23): DenseLayer(
>             (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer24): DenseLayer(
>             (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>         )
>         (transition3): Transition(
>           (norm): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>           (relu): ReLU(inplace=True)
>           (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
>           (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
>         )
>         (denseblock4): DenseBlock(
>           (denselayer1): DenseLayer(
>             (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer2): DenseLayer(
>             (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer3): DenseLayer(
>             (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer4): DenseLayer(
>             (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer5): DenseLayer(
>             (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer6): DenseLayer(
>             (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer7): DenseLayer(
>             (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer8): DenseLayer(
>             (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer9): DenseLayer(
>             (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer10): DenseLayer(
>             (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer11): DenseLayer(
>             (norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer12): DenseLayer(
>             (norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer13): DenseLayer(
>             (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer14): DenseLayer(
>             (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer15): DenseLayer(
>             (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>           (denselayer16): DenseLayer(
>             (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu1): ReLU(inplace=True)
>             (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
>             (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>             (relu2): ReLU(inplace=True)
>             (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
>           )
>         )
>         (norm5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
>         (relu5): ReLU(inplace=True)
>       )
>       (classifier): Linear(in_features=1024, out_features=2, bias=True)
>     )
>  
>  
>     
>  
>     ![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/0MSeXTBoN2PpiGVFEm7ztdH9xIj6.png)
>  
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>  
>
复制代码
    # 统计模型参数量以及其他指标
    import torchsummary as summary
    summary.summary(model,(3,224,224))
    
    
    python

代码输出:


复制代码
>             Layer (type)               Output Shape         Param #
>     ================================================================
>                 Conv2d-1         [-1, 64, 112, 112]           9,408
>            BatchNorm2d-2         [-1, 64, 112, 112]             128
>                   ReLU-3         [-1, 64, 112, 112]               0
>              MaxPool2d-4           [-1, 64, 56, 56]               0
>            BatchNorm2d-5           [-1, 64, 56, 56]             128
>                   ReLU-6           [-1, 64, 56, 56]               0
>                 Conv2d-7          [-1, 128, 56, 56]           8,192
>            BatchNorm2d-8          [-1, 128, 56, 56]             256
>                   ReLU-9          [-1, 128, 56, 56]               0
>                Conv2d-10           [-1, 32, 56, 56]          36,864
>           BatchNorm2d-11           [-1, 96, 56, 56]             192
>                  ReLU-12           [-1, 96, 56, 56]               0
>                Conv2d-13          [-1, 128, 56, 56]          12,288
>           BatchNorm2d-14          [-1, 128, 56, 56]             256
>                  ReLU-15          [-1, 128, 56, 56]               0
>                Conv2d-16           [-1, 32, 56, 56]          36,864
>           BatchNorm2d-17          [-1, 128, 56, 56]             256
>                  ReLU-18          [-1, 128, 56, 56]               0
>                Conv2d-19          [-1, 128, 56, 56]          16,384
>           BatchNorm2d-20          [-1, 128, 56, 56]             256
>                  ReLU-21          [-1, 128, 56, 56]               0
>                Conv2d-22           [-1, 32, 56, 56]          36,864
>           BatchNorm2d-23          [-1, 160, 56, 56]             320
>                  ReLU-24          [-1, 160, 56, 56]               0
>                Conv2d-25          [-1, 128, 56, 56]          20,480
>           BatchNorm2d-26          [-1, 128, 56, 56]             256
>                  ReLU-27          [-1, 128, 56, 56]               0
>                Conv2d-28           [-1, 32, 56, 56]          36,864
>           BatchNorm2d-29          [-1, 192, 56, 56]             384
>                  ReLU-30          [-1, 192, 56, 56]               0
>                Conv2d-31          [-1, 128, 56, 56]          24,576
>           BatchNorm2d-32          [-1, 128, 56, 56]             256
>                  ReLU-33          [-1, 128, 56, 56]               0
>                Conv2d-34           [-1, 32, 56, 56]          36,864
>           BatchNorm2d-35          [-1, 224, 56, 56]             448
>                  ReLU-36          [-1, 224, 56, 56]               0
>                Conv2d-37          [-1, 128, 56, 56]          28,672
>           BatchNorm2d-38          [-1, 128, 56, 56]             256
>                  ReLU-39          [-1, 128, 56, 56]               0
>                Conv2d-40           [-1, 32, 56, 56]          36,864
>           BatchNorm2d-41          [-1, 256, 56, 56]             512
>                  ReLU-42          [-1, 256, 56, 56]               0
>                Conv2d-43          [-1, 128, 56, 56]          32,768
>             AvgPool2d-44          [-1, 128, 28, 28]               0
>           BatchNorm2d-45          [-1, 128, 28, 28]             256
>                  ReLU-46          [-1, 128, 28, 28]               0
>                Conv2d-47          [-1, 128, 28, 28]          16,384
>           BatchNorm2d-48          [-1, 128, 28, 28]             256
>                  ReLU-49          [-1, 128, 28, 28]               0
>                Conv2d-50           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-51          [-1, 160, 28, 28]             320
>                  ReLU-52          [-1, 160, 28, 28]               0
>                Conv2d-53          [-1, 128, 28, 28]          20,480
>           BatchNorm2d-54          [-1, 128, 28, 28]             256
>                  ReLU-55          [-1, 128, 28, 28]               0
>                Conv2d-56           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-57          [-1, 192, 28, 28]             384
>                  ReLU-58          [-1, 192, 28, 28]               0
>                Conv2d-59          [-1, 128, 28, 28]          24,576
>           BatchNorm2d-60          [-1, 128, 28, 28]             256
>                  ReLU-61          [-1, 128, 28, 28]               0
>                Conv2d-62           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-63          [-1, 224, 28, 28]             448
>                  ReLU-64          [-1, 224, 28, 28]               0
>                Conv2d-65          [-1, 128, 28, 28]          28,672
>           BatchNorm2d-66          [-1, 128, 28, 28]             256
>                  ReLU-67          [-1, 128, 28, 28]               0
>                Conv2d-68           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-69          [-1, 256, 28, 28]             512
>                  ReLU-70          [-1, 256, 28, 28]               0
>                Conv2d-71          [-1, 128, 28, 28]          32,768
>           BatchNorm2d-72          [-1, 128, 28, 28]             256
>                  ReLU-73          [-1, 128, 28, 28]               0
>                Conv2d-74           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-75          [-1, 288, 28, 28]             576
>                  ReLU-76          [-1, 288, 28, 28]               0
>                Conv2d-77          [-1, 128, 28, 28]          36,864
>           BatchNorm2d-78          [-1, 128, 28, 28]             256
>                  ReLU-79          [-1, 128, 28, 28]               0
>                Conv2d-80           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-81          [-1, 320, 28, 28]             640
>                  ReLU-82          [-1, 320, 28, 28]               0
>                Conv2d-83          [-1, 128, 28, 28]          40,960
>           BatchNorm2d-84          [-1, 128, 28, 28]             256
>                  ReLU-85          [-1, 128, 28, 28]               0
>                Conv2d-86           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-87          [-1, 352, 28, 28]             704
>                  ReLU-88          [-1, 352, 28, 28]               0
>                Conv2d-89          [-1, 128, 28, 28]          45,056
>           BatchNorm2d-90          [-1, 128, 28, 28]             256
>                  ReLU-91          [-1, 128, 28, 28]               0
>                Conv2d-92           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-93          [-1, 384, 28, 28]             768
>                  ReLU-94          [-1, 384, 28, 28]               0
>                Conv2d-95          [-1, 128, 28, 28]          49,152
>           BatchNorm2d-96          [-1, 128, 28, 28]             256
>                  ReLU-97          [-1, 128, 28, 28]               0
>                Conv2d-98           [-1, 32, 28, 28]          36,864
>           BatchNorm2d-99          [-1, 416, 28, 28]             832
>                 ReLU-100          [-1, 416, 28, 28]               0
>               Conv2d-101          [-1, 128, 28, 28]          53,248
>          BatchNorm2d-102          [-1, 128, 28, 28]             256
>                 ReLU-103          [-1, 128, 28, 28]               0
>               Conv2d-104           [-1, 32, 28, 28]          36,864
>          BatchNorm2d-105          [-1, 448, 28, 28]             896
>                 ReLU-106          [-1, 448, 28, 28]               0
>               Conv2d-107          [-1, 128, 28, 28]          57,344
>          BatchNorm2d-108          [-1, 128, 28, 28]             256
>                 ReLU-109          [-1, 128, 28, 28]               0
>               Conv2d-110           [-1, 32, 28, 28]          36,864
>          BatchNorm2d-111          [-1, 480, 28, 28]             960
>                 ReLU-112          [-1, 480, 28, 28]               0
>               Conv2d-113          [-1, 128, 28, 28]          61,440
>          BatchNorm2d-114          [-1, 128, 28, 28]             256
>                 ReLU-115          [-1, 128, 28, 28]               0
>               Conv2d-116           [-1, 32, 28, 28]          36,864
>          BatchNorm2d-117          [-1, 512, 28, 28]           1,024
>                 ReLU-118          [-1, 512, 28, 28]               0
>               Conv2d-119          [-1, 256, 28, 28]         131,072
>            AvgPool2d-120          [-1, 256, 14, 14]               0
>          BatchNorm2d-121          [-1, 256, 14, 14]             512
>                 ReLU-122          [-1, 256, 14, 14]               0
>               Conv2d-123          [-1, 128, 14, 14]          32,768
>          BatchNorm2d-124          [-1, 128, 14, 14]             256
>                 ReLU-125          [-1, 128, 14, 14]               0
>               Conv2d-126           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-127          [-1, 288, 14, 14]             576
>                 ReLU-128          [-1, 288, 14, 14]               0
>               Conv2d-129          [-1, 128, 14, 14]          36,864
>          BatchNorm2d-130          [-1, 128, 14, 14]             256
>                 ReLU-131          [-1, 128, 14, 14]               0
>               Conv2d-132           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-133          [-1, 320, 14, 14]             640
>                 ReLU-134          [-1, 320, 14, 14]               0
>               Conv2d-135          [-1, 128, 14, 14]          40,960
>          BatchNorm2d-136          [-1, 128, 14, 14]             256
>                 ReLU-137          [-1, 128, 14, 14]               0
>               Conv2d-138           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-139          [-1, 352, 14, 14]             704
>                 ReLU-140          [-1, 352, 14, 14]               0
>               Conv2d-141          [-1, 128, 14, 14]          45,056
>          BatchNorm2d-142          [-1, 128, 14, 14]             256
>                 ReLU-143          [-1, 128, 14, 14]               0
>               Conv2d-144           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-145          [-1, 384, 14, 14]             768
>                 ReLU-146          [-1, 384, 14, 14]               0
>               Conv2d-147          [-1, 128, 14, 14]          49,152
>          BatchNorm2d-148          [-1, 128, 14, 14]             256
>                 ReLU-149          [-1, 128, 14, 14]               0
>               Conv2d-150           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-151          [-1, 416, 14, 14]             832
>                 ReLU-152          [-1, 416, 14, 14]               0
>               Conv2d-153          [-1, 128, 14, 14]          53,248
>          BatchNorm2d-154          [-1, 128, 14, 14]             256
>                 ReLU-155          [-1, 128, 14, 14]               0
>               Conv2d-156           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-157          [-1, 448, 14, 14]             896
>                 ReLU-158          [-1, 448, 14, 14]               0
>               Conv2d-159          [-1, 128, 14, 14]          57,344
>          BatchNorm2d-160          [-1, 128, 14, 14]             256
>                 ReLU-161          [-1, 128, 14, 14]               0
>               Conv2d-162           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-163          [-1, 480, 14, 14]             960
>                 ReLU-164          [-1, 480, 14, 14]               0
>               Conv2d-165          [-1, 128, 14, 14]          61,440
>          BatchNorm2d-166          [-1, 128, 14, 14]             256
>                 ReLU-167          [-1, 128, 14, 14]               0
>               Conv2d-168           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-169          [-1, 512, 14, 14]           1,024
>                 ReLU-170          [-1, 512, 14, 14]               0
>               Conv2d-171          [-1, 128, 14, 14]          65,536
>          BatchNorm2d-172          [-1, 128, 14, 14]             256
>                 ReLU-173          [-1, 128, 14, 14]               0
>               Conv2d-174           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-175          [-1, 544, 14, 14]           1,088
>                 ReLU-176          [-1, 544, 14, 14]               0
>               Conv2d-177          [-1, 128, 14, 14]          69,632
>          BatchNorm2d-178          [-1, 128, 14, 14]             256
>                 ReLU-179          [-1, 128, 14, 14]               0
>               Conv2d-180           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-181          [-1, 576, 14, 14]           1,152
>                 ReLU-182          [-1, 576, 14, 14]               0
>               Conv2d-183          [-1, 128, 14, 14]          73,728
>          BatchNorm2d-184          [-1, 128, 14, 14]             256
>                 ReLU-185          [-1, 128, 14, 14]               0
>               Conv2d-186           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-187          [-1, 608, 14, 14]           1,216
>                 ReLU-188          [-1, 608, 14, 14]               0
>               Conv2d-189          [-1, 128, 14, 14]          77,824
>          BatchNorm2d-190          [-1, 128, 14, 14]             256
>                 ReLU-191          [-1, 128, 14, 14]               0
>               Conv2d-192           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-193          [-1, 640, 14, 14]           1,280
>                 ReLU-194          [-1, 640, 14, 14]               0
>               Conv2d-195          [-1, 128, 14, 14]          81,920
>          BatchNorm2d-196          [-1, 128, 14, 14]             256
>                 ReLU-197          [-1, 128, 14, 14]               0
>               Conv2d-198           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-199          [-1, 672, 14, 14]           1,344
>                 ReLU-200          [-1, 672, 14, 14]               0
>               Conv2d-201          [-1, 128, 14, 14]          86,016
>          BatchNorm2d-202          [-1, 128, 14, 14]             256
>                 ReLU-203          [-1, 128, 14, 14]               0
>               Conv2d-204           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-205          [-1, 704, 14, 14]           1,408
>                 ReLU-206          [-1, 704, 14, 14]               0
>               Conv2d-207          [-1, 128, 14, 14]          90,112
>          BatchNorm2d-208          [-1, 128, 14, 14]             256
>                 ReLU-209          [-1, 128, 14, 14]               0
>               Conv2d-210           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-211          [-1, 736, 14, 14]           1,472
>                 ReLU-212          [-1, 736, 14, 14]               0
>               Conv2d-213          [-1, 128, 14, 14]          94,208
>          BatchNorm2d-214          [-1, 128, 14, 14]             256
>                 ReLU-215          [-1, 128, 14, 14]               0
>               Conv2d-216           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-217          [-1, 768, 14, 14]           1,536
>                 ReLU-218          [-1, 768, 14, 14]               0
>               Conv2d-219          [-1, 128, 14, 14]          98,304
>          BatchNorm2d-220          [-1, 128, 14, 14]             256
>                 ReLU-221          [-1, 128, 14, 14]               0
>               Conv2d-222           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-223          [-1, 800, 14, 14]           1,600
>                 ReLU-224          [-1, 800, 14, 14]               0
>               Conv2d-225          [-1, 128, 14, 14]         102,400
>          BatchNorm2d-226          [-1, 128, 14, 14]             256
>                 ReLU-227          [-1, 128, 14, 14]               0
>               Conv2d-228           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-229          [-1, 832, 14, 14]           1,664
>                 ReLU-230          [-1, 832, 14, 14]               0
>               Conv2d-231          [-1, 128, 14, 14]         106,496
>          BatchNorm2d-232          [-1, 128, 14, 14]             256
>                 ReLU-233          [-1, 128, 14, 14]               0
>               Conv2d-234           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-235          [-1, 864, 14, 14]           1,728
>                 ReLU-236          [-1, 864, 14, 14]               0
>               Conv2d-237          [-1, 128, 14, 14]         110,592
>          BatchNorm2d-238          [-1, 128, 14, 14]             256
>                 ReLU-239          [-1, 128, 14, 14]               0
>               Conv2d-240           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-241          [-1, 896, 14, 14]           1,792
>                 ReLU-242          [-1, 896, 14, 14]               0
>               Conv2d-243          [-1, 128, 14, 14]         114,688
>          BatchNorm2d-244          [-1, 128, 14, 14]             256
>                 ReLU-245          [-1, 128, 14, 14]               0
>               Conv2d-246           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-247          [-1, 928, 14, 14]           1,856
>                 ReLU-248          [-1, 928, 14, 14]               0
>               Conv2d-249          [-1, 128, 14, 14]         118,784
>          BatchNorm2d-250          [-1, 128, 14, 14]             256
>                 ReLU-251          [-1, 128, 14, 14]               0
>               Conv2d-252           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-253          [-1, 960, 14, 14]           1,920
>                 ReLU-254          [-1, 960, 14, 14]               0
>               Conv2d-255          [-1, 128, 14, 14]         122,880
>          BatchNorm2d-256          [-1, 128, 14, 14]             256
>                 ReLU-257          [-1, 128, 14, 14]               0
>               Conv2d-258           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-259          [-1, 992, 14, 14]           1,984
>                 ReLU-260          [-1, 992, 14, 14]               0
>               Conv2d-261          [-1, 128, 14, 14]         126,976
>          BatchNorm2d-262          [-1, 128, 14, 14]             256
>                 ReLU-263          [-1, 128, 14, 14]               0
>               Conv2d-264           [-1, 32, 14, 14]          36,864
>          BatchNorm2d-265         [-1, 1024, 14, 14]           2,048
>                 ReLU-266         [-1, 1024, 14, 14]               0
>               Conv2d-267          [-1, 512, 14, 14]         524,288
>            AvgPool2d-268            [-1, 512, 7, 7]               0
>          BatchNorm2d-269            [-1, 512, 7, 7]           1,024
>                 ReLU-270            [-1, 512, 7, 7]               0
>               Conv2d-271            [-1, 128, 7, 7]          65,536
>          BatchNorm2d-272            [-1, 128, 7, 7]             256
>                 ReLU-273            [-1, 128, 7, 7]               0
>               Conv2d-274             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-275            [-1, 544, 7, 7]           1,088
>                 ReLU-276            [-1, 544, 7, 7]               0
>               Conv2d-277            [-1, 128, 7, 7]          69,632
>          BatchNorm2d-278            [-1, 128, 7, 7]             256
>                 ReLU-279            [-1, 128, 7, 7]               0
>               Conv2d-280             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-281            [-1, 576, 7, 7]           1,152
>                 ReLU-282            [-1, 576, 7, 7]               0
>               Conv2d-283            [-1, 128, 7, 7]          73,728
>          BatchNorm2d-284            [-1, 128, 7, 7]             256
>                 ReLU-285            [-1, 128, 7, 7]               0
>               Conv2d-286             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-287            [-1, 608, 7, 7]           1,216
>                 ReLU-288            [-1, 608, 7, 7]               0
>               Conv2d-289            [-1, 128, 7, 7]          77,824
>          BatchNorm2d-290            [-1, 128, 7, 7]             256
>                 ReLU-291            [-1, 128, 7, 7]               0
>               Conv2d-292             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-293            [-1, 640, 7, 7]           1,280
>                 ReLU-294            [-1, 640, 7, 7]               0
>               Conv2d-295            [-1, 128, 7, 7]          81,920
>          BatchNorm2d-296            [-1, 128, 7, 7]             256
>                 ReLU-297            [-1, 128, 7, 7]               0
>               Conv2d-298             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-299            [-1, 672, 7, 7]           1,344
>                 ReLU-300            [-1, 672, 7, 7]               0
>               Conv2d-301            [-1, 128, 7, 7]          86,016
>          BatchNorm2d-302            [-1, 128, 7, 7]             256
>                 ReLU-303            [-1, 128, 7, 7]               0
>               Conv2d-304             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-305            [-1, 704, 7, 7]           1,408
>                 ReLU-306            [-1, 704, 7, 7]               0
>               Conv2d-307            [-1, 128, 7, 7]          90,112
>          BatchNorm2d-308            [-1, 128, 7, 7]             256
>                 ReLU-309            [-1, 128, 7, 7]               0
>               Conv2d-310             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-311            [-1, 736, 7, 7]           1,472
>                 ReLU-312            [-1, 736, 7, 7]               0
>               Conv2d-313            [-1, 128, 7, 7]          94,208
>          BatchNorm2d-314            [-1, 128, 7, 7]             256
>                 ReLU-315            [-1, 128, 7, 7]               0
>               Conv2d-316             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-317            [-1, 768, 7, 7]           1,536
>                 ReLU-318            [-1, 768, 7, 7]               0
>               Conv2d-319            [-1, 128, 7, 7]          98,304
>          BatchNorm2d-320            [-1, 128, 7, 7]             256
>                 ReLU-321            [-1, 128, 7, 7]               0
>               Conv2d-322             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-323            [-1, 800, 7, 7]           1,600
>                 ReLU-324            [-1, 800, 7, 7]               0
>               Conv2d-325            [-1, 128, 7, 7]         102,400
>          BatchNorm2d-326            [-1, 128, 7, 7]             256
>                 ReLU-327            [-1, 128, 7, 7]               0
>               Conv2d-328             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-329            [-1, 832, 7, 7]           1,664
>                 ReLU-330            [-1, 832, 7, 7]               0
>               Conv2d-331            [-1, 128, 7, 7]         106,496
>          BatchNorm2d-332            [-1, 128, 7, 7]             256
>                 ReLU-333            [-1, 128, 7, 7]               0
>               Conv2d-334             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-335            [-1, 864, 7, 7]           1,728
>                 ReLU-336            [-1, 864, 7, 7]               0
>               Conv2d-337            [-1, 128, 7, 7]         110,592
>          BatchNorm2d-338            [-1, 128, 7, 7]             256
>                 ReLU-339            [-1, 128, 7, 7]               0
>               Conv2d-340             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-341            [-1, 896, 7, 7]           1,792
>                 ReLU-342            [-1, 896, 7, 7]               0
>               Conv2d-343            [-1, 128, 7, 7]         114,688
>          BatchNorm2d-344            [-1, 128, 7, 7]             256
>                 ReLU-345            [-1, 128, 7, 7]               0
>               Conv2d-346             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-347            [-1, 928, 7, 7]           1,856
>                 ReLU-348            [-1, 928, 7, 7]               0
>               Conv2d-349            [-1, 128, 7, 7]         118,784
>          BatchNorm2d-350            [-1, 128, 7, 7]             256
>                 ReLU-351            [-1, 128, 7, 7]               0
>               Conv2d-352             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-353            [-1, 960, 7, 7]           1,920
>                 ReLU-354            [-1, 960, 7, 7]               0
>               Conv2d-355            [-1, 128, 7, 7]         122,880
>          BatchNorm2d-356            [-1, 128, 7, 7]             256
>                 ReLU-357            [-1, 128, 7, 7]               0
>               Conv2d-358             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-359            [-1, 992, 7, 7]           1,984
>                 ReLU-360            [-1, 992, 7, 7]               0
>               Conv2d-361            [-1, 128, 7, 7]         126,976
>          BatchNorm2d-362            [-1, 128, 7, 7]             256
>                 ReLU-363            [-1, 128, 7, 7]               0
>               Conv2d-364             [-1, 32, 7, 7]          36,864
>          BatchNorm2d-365           [-1, 1024, 7, 7]           2,048
>                 ReLU-366           [-1, 1024, 7, 7]               0
>               Linear-367                    [-1, 2]           2,050
>     ================================================================
>     Total params: 6,955,906
>     Trainable params: 6,955,906
>     Non-trainable params: 0
>     ----------------------------------------------------------------
>     Input size (MB): 0.57
>     Forward/backward pass size (MB): 294.57
>     Params size (MB): 26.53
>     Estimated Total Size (MB): 321.68
>     ----------------------------------------------------------------
>  
>  
>     
>  
>     ![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/uD806jms3wqN5QYlt7EznBHAvfIT.png)
>  
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>  
>

四、训练模型
1、编写训练函数

复制代码
    def train(dataloader,model,loss_fn,optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
     
    train_acc,train_loss = 0,0
     
    for X,y in dataloader:
        X,y = X.to(device),y.to(device)
     
        pred = model(X)
        loss = loss_fn(pred,y)
     
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
     
        train_loss += loss.item()
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
     
    train_loss /= num_batches
    train_acc /= size
     
    return train_acc,train_loss
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/UKfgvd5hrmQzFebYSGEXq4uATi2C.png)

2、编写测试函数
在功能上两者具有相似性,在此过程中并未对网络权重进行梯度下降更新

复制代码
    def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
     
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
     
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
     
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
     
    test_acc /= size
    test_loss /= num_batches
     
    return test_acc, test_loss
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/OrRVozA2myuHvDNbJ7idwhT8M0Lx.png)

3、正式训练

复制代码
    import copy
    
    loss_fn = nn.CrossEntropyLoss()
    learn_rate = 1e-4
    # SGD与Adam优化器,选择其中一个
    # opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
    opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
    
    scheduler=torch.optim.lr_scheduler.StepLR(opt,step_size=1,gamma=0.9)  #定义学习率高度器
     
    epochs = 100    #设置训练模型的最大轮数为100,但可能到不了100
    patience=10     #早停的耐心值,即如果模型连续10个周期没有准确率提升,则跳出训练
     
    train_loss=[]             
    train_acc=[]
    test_loss=[]
    test_acc=[]
    best_acc = 0              #设置一个最佳的准确率,作为最佳模型的判别指标
    no_improve_epoch=0        #用于跟踪准确率是否提升的计数器
    epoch=0                   #用于统计最终的训练模型的轮数,这里设置初始值为0;为绘图作准备,这里的绘图范围不是epochs = 100
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/t03cRU9TaZAkeV5r1ism2p74oyOW.png)
复制代码
    #开始训练
    for epoch in range(epochs):
     
    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,opt)
     
    model.eval()
    epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
     
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        no_improve_epoch=0   #重置计数器
        #保存最佳模型的检查点
        PATH='./J3-1_best_model(j3-1).pth'
        torch.save({
            'epoch':epoch,
            'model_state_dict':best_model.state_dict(),
            'optimizer_state_dict':opt.state_dict(),
            'loss':epoch_test_loss,
        },PATH)
    else:
        no_improve_epoch += 1
        
    if no_improve_epoch >= patience:
        print(f"Early stoping triggered at epoch {epoch+1}")
        break   #早停
     
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
     
    scheduler.step()     #更新学习率
    lr = opt.state_dict()['param_groups'][0]['lr']
     
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,epoch_test_acc*100, epoch_test_loss, lr))
     
    # 保存最佳模型到文件中
    PATH='./j3-1_best_model_.pth'     #保存的参数文件名
    torch.save(best_model.state_dict(),PATH)
    
    print('Done')
    print(epoch)
    print('no_improve_epoch:',no_improve_epoch)
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/AnFLqP7o24pShBsXK3kCzcigxGev.png)

代码输出:

复制代码
>     Epoch: 1, Train_acc:81.5%, Train_loss:0.418, Test_acc:82.6%,Test_loss:0.407, Lr:9.00E-05
>     Epoch: 2, Train_acc:85.2%, Train_loss:0.353, Test_acc:85.5%, Test_loss:0.362, Lr:8.10E-05
>     Epoch: 3, Train_acc:87.2%, Train_loss:0.315, Test_acc:85.3%, Test_loss:0.335, Lr:7.29E-05
>     Epoch: 4, Train_acc:88.1%, Train_loss:0.295, Test_acc:89.7%, Test_loss:0.252, Lr:6.56E-05
>     Epoch: 5, Train_acc:89.2%, Train_loss:0.265, Test_acc:88.9%, Test_loss:0.253, Lr:5.90E-05
>     Epoch: 6, Train_acc:89.1%, Train_loss:0.261, Test_acc:90.5%, Test_loss:0.248, Lr:5.31E-05
>     Epoch: 7, Train_acc:90.3%, Train_loss:0.242, Test_acc:89.1%, Test_loss:0.273, Lr:4.78E-05
>     Epoch: 8, Train_acc:90.8%, Train_loss:0.228, Test_acc:91.3%, Test_loss:0.238, Lr:4.30E-05
>     Epoch: 9, Train_acc:91.2%, Train_loss:0.224, Test_acc:91.2%, Test_loss:0.242, Lr:3.87E-05
>     Epoch:10, Train_acc:91.6%, Train_loss:0.214, Test_acc:91.2%, Test_loss:0.234, Lr:3.49E-05
>     Epoch:11, Train_acc:91.7%, Train_loss:0.207, Test_acc:91.5%, Test_loss:0.226, Lr:3.14E-05
>     Epoch:12, Train_acc:92.4%, Train_loss:0.198, Test_acc:91.5%, Test_loss:0.217, Lr:2.82E-05
>     Epoch:13, Train_acc:92.4%, Train_loss:0.189, Test_acc:89.6%, Test_loss:0.259, Lr:2.54E-05
>     Epoch:14, Train_acc:92.7%, Train_loss:0.180, Test_acc:91.5%, Test_loss:0.233, Lr:2.29E-05
>     Epoch:15, Train_acc:93.3%, Train_loss:0.171, Test_acc:91.0%, Test_loss:0.242, Lr:2.06E-05
>     Epoch:16, Train_acc:93.7%, Train_loss:0.163, Test_acc:91.6%, Test_loss:0.220, Lr:1.85E-05
>     Epoch:17, Train_acc:93.7%, Train_loss:0.158, Test_acc:92.1%, Test_loss:0.209, Lr:1.67E-05
>     Epoch:18, Train_acc:94.1%, Train_loss:0.148, Test_acc:92.3%, Test_loss:0.216, Lr:1.50E-05
>     Epoch:19, Train_acc:94.4%, Train_loss:0.145, Test_acc:91.9%, Test_loss:0.226, Lr:1.35E-05
>     Epoch:20, Train_acc:94.8%, Train_loss:0.135, Test_acc:90.7%, Test_loss:0.257, Lr:1.22E-05
>     Epoch:21, Train_acc:94.9%, Train_loss:0.129, Test_acc:90.9%, Test_loss:0.232, Lr:1.09E-05
>     Epoch:22, Train_acc:95.5%, Train_loss:0.121, Test_acc:91.6%, Test_loss:0.234, Lr:9.85E-06
>     Epoch:23, Train_acc:95.2%, Train_loss:0.123, Test_acc:92.4%, Test_loss:0.204, Lr:8.86E-06
>     Epoch:24, Train_acc:95.7%, Train_loss:0.114, Test_acc:92.2%, Test_loss:0.203, Lr:7.98E-06
>     Epoch:25, Train_acc:95.8%, Train_loss:0.109, Test_acc:91.6%, Test_loss:0.218, Lr:7.18E-06
>     Epoch:26, Train_acc:95.9%, Train_loss:0.108, Test_acc:90.9%, Test_loss:0.271, Lr:6.46E-06
>     Epoch:27, Train_acc:95.9%, Train_loss:0.109, Test_acc:91.1%, Test_loss:0.251, Lr:5.81E-06
>     Epoch:28, Train_acc:96.0%, Train_loss:0.103, Test_acc:91.5%, Test_loss:0.240, Lr:5.23E-06
>     Epoch:29, Train_acc:96.5%, Train_loss:0.097, Test_acc:92.7%, Test_loss:0.200, Lr:4.71E-06
>     Epoch:30, Train_acc:96.5%, Train_loss:0.093, Test_acc:91.6%, Test_loss:0.242, Lr:4.24E-06
>     Epoch:31, Train_acc:96.5%, Train_loss:0.092, Test_acc:92.1%, Test_loss:0.228, Lr:3.82E-06
>     Epoch:32, Train_acc:96.9%, Train_loss:0.086, Test_acc:91.4%, Test_loss:0.234, Lr:3.43E-06
>     Epoch:33, Train_acc:97.1%, Train_loss:0.081, Test_acc:92.1%, Test_loss:0.225, Lr:3.09E-06
>     Epoch:34, Train_acc:97.2%, Train_loss:0.078, Test_acc:92.1%, Test_loss:0.226, Lr:2.78E-06
>     Epoch:35, Train_acc:97.0%, Train_loss:0.082, Test_acc:91.8%, Test_loss:0.229, Lr:2.50E-06
>     Epoch:36, Train_acc:97.4%, Train_loss:0.076, Test_acc:91.1%, Test_loss:0.251, Lr:2.25E-06
>     Epoch:37, Train_acc:97.3%, Train_loss:0.075, Test_acc:91.4%, Test_loss:0.238, Lr:2.03E-06
>     Epoch:38, Train_acc:97.1%, Train_loss:0.078, Test_acc:90.4%, Test_loss:0.276, Lr:1.82E-06
>     Early stoping triggered at epoch 39
>     Done
>     38
>     no_improve_epoch: 10
>  
>  
>     
>  
>     ![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/BmG1hyKurdSk3QLzj64Hbq7PDtna.png)
>  
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>       
>  
>

五、结果可视化
1、Loss与Accuracy图

复制代码
    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
     
    epochs_range = range(epoch)
     
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
     
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
     
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/0YVmX1Ea7z6Jy2PpiRbhcoAUwrMN.png)

代码输出:

在这里插入图片描述

2、预测

复制代码
    from PIL import Image 
    
    classes = list(total_data.class_to_idx)
    
    def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
    
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)
    
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/SnEq6NBrfDcdYuUCM5wPJW74tlKz.png)
复制代码
    import os
    from pathlib import Path
    import random
    
    image=[]
    def image_path(data_dir):
    file_list=os.listdir(data_dir)                       #列出四个分类标签
    data_file_dir=file_list                              #从四个分类标签中随机选择一个
    data_dir=Path(data_dir)
    for i in data_file_dir:
        i=Path(i)
        image_file_path=data_dir.joinpath(i)            #拼接路径
        data_file_paths=image_file_path.iterdir()       #罗列文件夹的内容
        data_file_paths=list(data_file_paths)           #要转换为列表
        image.append(data_file_paths)
    file=random.choice(image)                           #从所有的图像中随机选择一类
    file=random.choice(file)                            #从选择的类中随机选择一张图片
    return file
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/4SuCXBtUEaAw7lqO3VM5P2FpRQIx.png)
复制代码
    data_dir='J3-1/'
    image_path=image_path(data_dir)
    image_path
    
    
    python

代码输出:

复制代码
>     WindowsPath('J3-1/1/9075_idx5_x1251_y251_class1.png')
>  
>  
>     
>  
>       
>  
>
复制代码
    # 预测训练集中的某张照片
    predict_one_image(image_path=image_path, 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)
    
    
    python

代码输出:

预测结果是:1

在这里插入图片描述

六、总结 相较于传统的图像识别技术,在三天内完成了本次训练任务,其主要原因在于训练数据集规模过大。其中包含13403张待处理图片。

全部评论 (0)

还没有任何评论哟~