Advertisement

第14周:DenseNet算法 实现乳腺癌识别

阅读量:

目录

前言

一、前期准备

1.1 数据集介绍

1.2 包和数据导入

1.3 图片处理

1.4 数据集划分

二、模型搭建

三、模型训练

3.1 训练函数和测试函数

3.2 正式训练过程

四、结果可视化

4.1 Loss和Accuracy图

总结


前言

  • 🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客
  • 🍖 原作者:[K同学啊]()

说在前面

本周目标:探索一下深度学习在医学领域的应用,乳腺癌是女性最常见的癌症形式,浸润性导管癌 (IDC)是最常见的乳腺癌形式。准确识别和分类乳腺癌亚型是一项重要的临床任务,利用深度学习方法识别可以有效节省时间并减少错误

我的环境:Python3.8、Pycharm2020、torch1.12.1+cu113

数据来源:K同学啊


一、前期准备

1.1 数据集介绍

多张以40倍扫描的乳腺癌Bca标本的完整载玻片图像

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据合集,并设置对应文件目录,以供后续学习过程中使用

1.2 包和数据导入

代码如下:

复制代码
 import torch

    
 import torch.nn as nn
    
 from torchvision import transforms, datasets
    
 import os, PIL, pathlib, warnings
    
 import torch.nn.functional as F
    
 import matplotlib.pyplot as plt
    
 from torch.utils.data import Dataset
    
 from PIL import Image
    
 import copy
    
  
    
  
    
 #一、导入数据
    
 '''
    
 1.1 设置GPU
    
 '''
    
 warnings.filterwarnings("ignore")
    
  
    
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
 print(device)
    
  
    
 '''
    
 1.2 导入数据
    
 '''
    
 data_dir = './J3-data/'
    
 data_dir = pathlib.Path(data_dir)
    
 data_paths = list(data_dir.glob('*'))
    
  
    
 classNames = [str(path).split('\ ')[1] for path in data_paths]
    
 print(classNames)
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/V9OhivQSU1qjymfs5nEWGHRuc24B.png)

输出结果:

cuda
['0', '1']

1.3 图片处理

代码如下:

复制代码
 train_transforms = transforms.Compose([

    
     transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    
     # transforms.RandomHorizontalFlip(), # 随机水平翻转
    
     transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    
     transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
    
     mean=[0.485, 0.456, 0.406],
    
     std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    
 ])
    
  
    
 test_transform = transforms.Compose([
    
     transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    
     transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    
     transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
    
     mean=[0.485, 0.456, 0.406],
    
     std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    
 ])
    
  
    
 total_data = datasets.ImageFolder("./J3-data/",transform=train_transforms)
    
 print(total_data)
    
 print(total_data.class_to_idx)
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/wvDMeOrAqtIpl7iR1dYPZszj69F2.png)

打印输出:

Dataset ImageFolder
Number of datapoints: 13403
Root location: ./J3-data/
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
{'0': 0, '1': 1}

1.4 数据集划分

代码如下:

复制代码
 train_size = int(0.8 * len(total_data))

    
 test_size = len(total_data) - train_size
    
 train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
    
 print(train_dataset, test_dataset)
    
  
    
 '''
    
 2.3 可视化数据
    
 '''
    
 batch_size = 32
    
 train_dl = torch.utils.data.DataLoader(train_dataset,
    
                                    batch_size=batch_size,
    
                                    shuffle=True)
    
 test_dl = torch.utils.data.DataLoader(test_dataset,
    
                                   batch_size=batch_size,
    
                                   shuffle=True)
    
 for X, y in test_dl:
    
     print("Shape of X [N, C, H, W]: ", X.shape)
    
     print("Shape of y: ", y.shape, y.dtype)
    
     break
    
  
    
 image_folder = './J3-data/0'           #指定图像文件夹路径
    
  
    
 image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
    
 fig, axes = plt.subplots(2, 4, figsize=(16, 6))
    
  
    
 for ax, img_file in zip(axes.flat, image_files):
    
     img_path = os.path.join(image_folder, img_file)
    
     img = Image.open(img_path)
    
     ax.imshow(img)
    
     ax.axis('off')
    
 plt.tight_layout()
    
 plt.show()
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/PirMVvnaCq4FZdSgcE1Ahj9DJ0NW.png)

打印输出:

<torch.utils.data.dataset.Subset object at 0x00000273802E0670> <torch.utils.data.dataset.Subset object at 0x00000273802E0700>

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32]) torch.int64

二、模型搭建

模型具体介绍可参见上一篇文章第13周:DenseNet算法实战与解析-博客

与上一篇文章的区别是模型的没有加载预训练权重,所以本次实验虽然epoch只为20,训练了很久才出来结果,收敛速度明显变慢了

模型代码如下:

复制代码
 #三、模型

    
 '''
    
 3.1 DenseLayer层实现
    
 '''
    
 class _DenseLayer(nn.Sequential):
    
     """Basic unit of DenseBlock (using bottleneck layer) """
    
  
    
     def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
    
     super(_DenseLayer, self).__init__()
    
     self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
    
     self.add_module('relu1', nn.ReLU(inplace=True)),
    
     self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate,
    
                                        kernel_size=1, stride=1, bias=False)),
    
     self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
    
     self.add_module('relu2', nn.ReLU(inplace=True)),
    
     self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
    
                                        kernel_size=3, stride=1, padding=1, bias=False)),
    
     self.drop_rate = drop_rate
    
  
    
     def forward(self, x):
    
     new_features = super(_DenseLayer, self).forward(x)
    
     if self.drop_rate > 0:
    
         new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
    
     return torch.cat([x, new_features], 1)
    
  
    
  
    
 '''
    
 3.2 DenseBlock模块
    
 '''
    
 class _DenseBlock(nn.Sequential):
    
     def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
    
     super(_DenseBlock, self).__init__()
    
     for i in range(num_layers):
    
         layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size, drop_rate)
    
         self.add_module("denselayer%d" % (i+1,), layer)
    
  
    
 '''
    
 3.3 Transition层
    
 '''
    
 class _Transition(nn.Sequential):
    
     def __init__(self, num_input_feature, num_output_features):
    
     super(_Transition, self).__init__()
    
     self.add_module("norm", nn.BatchNorm2d(num_input_feature))
    
     self.add_module("relu", nn.ReLU(inplace=True))
    
     self.add_module("conv", nn.Conv2d(num_input_feature,num_output_features,kernel_size=1, stride=1, bias=False))
    
     self.add_module("pool", nn.AvgPool2d(2, stride=2))
    
  
    
 '''
    
 3.4 DenseNet网络实现
    
 '''
    
 from collections import OrderedDict
    
 class DenseNet(nn.Module):
    
     def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
    
              bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
    
     super(DenseNet, self).__init__()
    
     #first Conv2d
    
     self.features = nn.Sequential(OrderedDict([
    
         ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
    
         ("norm0", nn.BatchNorm2d(num_init_features)),
    
         ("relu0", nn.ReLU(inplace=True)),
    
         ("pool0", nn.MaxPool2d(3, stride=2, padding=1))
    
     ]))
    
  
    
     #DenseBlock
    
     num_features = num_init_features
    
     for i, num_layers in enumerate(block_config):
    
         block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
    
         self.features.add_module("denseblock%d" % (i+1),block)
    
         num_features += num_layers*growth_rate
    
         if i !=len(block_config) - 1:
    
             transition = _Transition(num_features, int(num_features*compression_rate))
    
             self.features.add_module("transition%d" % (i+1), transition)
    
             num_features = int(num_features * compression_rate)
    
  
    
     #final bn+ReLu
    
     self.features.add_module("norm5", nn.BatchNorm2d(num_features))
    
     self.features.add_module("relu5", nn.ReLU(inplace=True))
    
  
    
     #classification layer
    
     self.classifier = nn.Linear(num_features,num_classes)
    
  
    
     #params initialization
    
     for m in self.modules():
    
         if isinstance(m, nn.Conv2d):
    
             nn.init.kaiming_normal(m.weight)
    
         elif isinstance(m, nn.BatchNorm2d):
    
             nn.init.constant_(m.bias, 0)
    
             nn.init.constant_(m.weight, 1)
    
         elif isinstance(m, nn.Linear):
    
             nn.init.constant_(m.bias, 0)
    
  
    
     def forward(self, x):
    
     features = self.features(x)
    
     out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
    
     out = self.classifier(out)
    
     return out
    
  
    
  
    
  
    
 """搭建densenet121模型"""
    
 device = "cuda" if torch.cuda.is_available() else "cpu"
    
 print("Using {} device".format((device)))
    
  
    
 densenet121 = DenseNet(num_init_features=64, growth_rate=32,block_config=(6,12,24,16),
    
                    num_classes=len(classNames))
    
 import torchsummary as summary
    
 model = densenet121.to(device)
    
 print(model)
    
 print(summary.summary(model, (3, 224, 224)))  # 查看模型的参数量以及相关指标
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/eaDKy18kbn7PqHOuxhUj43LNI6zB.png)

打印的部分内容截图如下:

三、模型训练

3.1 训练函数和测试函数

训练函数和测试函数与前面文章中都一直,没有变化,代码如下:

复制代码
 def train(dataloader, model, optimizer, loss_fn):

    
     size = len(dataloader.dataset)
    
     num_batches = len(dataloader)
    
  
    
     train_acc, train_loss = 0, 0
    
  
    
     for X, y in dataloader:
    
     X, y = X.to(device), y.to(device)
    
  
    
     pred = model(X)
    
     loss = loss_fn(pred, y)
    
  
    
     optimizer.zero_grad()
    
     loss.backward()
    
     optimizer.step()
    
  
    
     train_loss += loss.item()
    
     train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
    
  
    
     train_loss /= num_batches
    
     train_acc /= size
    
  
    
     return train_acc, train_loss
    
  
    
 '''
    
 4.2 编写测试函数
    
 '''
    
 def test(dataloader, model, loss_fn):
    
     size = len(dataloader.dataset)  # 测试集的大小
    
     num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
    
     test_loss, test_acc = 0, 0
    
  
    
     # 当不进行训练时,停止梯度更新,节省计算内存消耗
    
     with torch.no_grad():
    
     for imgs, target in dataloader:
    
         imgs, target = imgs.to(device), target.to(device)
    
  
    
         # 计算loss
    
         target_pred = model(imgs)
    
         loss = loss_fn(target_pred, target)
    
  
    
         test_loss += loss.item()
    
         test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
  
    
     test_acc /= size
    
     test_loss /= num_batches
    
  
    
     return test_acc, test_loss
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/blEpVHg4zxPjcFZiQtfT8OUDAM0J.png)

3.2 正式训练过程

正式训练过程保存了最佳模型的相关参数

代码如下:

复制代码
 loss_fn = nn.CrossEntropyLoss()   #交叉熵函数

    
 learn_rate = 1e-4
    
 opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
    
  
    
 epochs = 20
    
 train_loss = []
    
 train_acc = []
    
 test_loss = []
    
 test_acc = []
    
 best_acc = 0
    
  
    
 # 开始训练
    
 for epoch in range(epochs):
    
  
    
     model.train()
    
     epoch_train_acc, epoch_train_loss = train(train_dl, model, opt, loss_fn)
    
  
    
     model.eval()
    
     epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
  
    
     if epoch_test_acc > best_acc:
    
     best_acc = epoch_test_acc
    
     best_model = copy.deepcopy(model)
    
  
    
     train_acc.append(epoch_train_acc)
    
     train_loss.append(epoch_train_loss)
    
     test_acc.append(epoch_test_acc)
    
     test_loss.append(epoch_test_loss)
    
  
    
     lr = opt.state_dict()['param_groups'][0]['lr']
    
  
    
     template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    
     print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
    
                       epoch_test_acc * 100, epoch_test_loss, lr))
    
  
    
 #保存最佳模型到文件中
    
 PATH = './best_model.pth'
    
 torch.save(best_model.state_dict(), PATH)
    
  
    
 print('Done')
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/9VwutLrXp3eSf0s61MqhyomABPGK.png)

训练过程如下:

四、结果可视化

4.1 Loss和Accuracy图

代码如下:

复制代码
 import warnings

    
 warnings.filterwarnings("ignore")             #忽略警告信息
    
 plt.rcParams['font.sans-serif'] = ['SimHei']  #用来正常显示中文标签
    
 plt.rcParams['axes.unicode_minus'] = False    #用来正常显示负号
    
 plt.rcParams['figure.dpi'] = 100              #分辨率
    
  
    
 epochs_range = range(epochs)
    
  
    
 plt.figure(figsize=(12, 3))
    
 plt.subplot(1, 2, 1)
    
  
    
 plt.plot(epochs_range, train_acc, label='Training Accuracy')
    
 plt.plot(epochs_range, test_acc, label='Test Accuracy')
    
 plt.legend(loc='lower right')
    
 plt.title('Training and Validation Accuracy')
    
  
    
 plt.subplot(1, 2, 2)
    
 plt.plot(epochs_range, train_loss, label='Training Loss')
    
 plt.plot(epochs_range, test_loss, label='Test Loss')
    
 plt.legend(loc='upper right')
    
 plt.title('Training and Validation Loss')
    
 plt.show()
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-19/I6XvgQ97aiteKfpEnRjPFJSYkTWG.png)

打印如下:

4.2 模型评估

调用最佳模型参数查看

复制代码
 #六、模型评估

    
 best_model.load_state_dict(torch.load(PATH, map_location=device))
    
 print(f'epoch_test_acc:{epoch_test_acc}, epoch_test_loss:{epoch_test_loss}')
    
    
    
    
    python
    
    

打印输出:

epoch_test_acc:0.9239089891831406, epoch_test_loss:0.25888495129488764

保存正确


总结

对DeseNet网络在乳腺癌细胞与正常细胞识别进行了应用,模型训练结果并不好,存在过拟合情况,在训练集上效果明显优于测试集,需要进一步优化模型相关参数设置

由于此处的DeseNet网络没有调用预训练权重,所以大大增加了训练收敛时间

全部评论 (0)

还没有任何评论哟~