Advertisement

深度循环神经网络

阅读量:
在这里插入图片描述
复制代码
    import torch
    from torch import nn
    from d2l import torch as d2l
    
    batch_size,num_steps = 32,35
    train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)
    
    vocab_size,num_hiddens,num_layers = len(vocab),256,2
    num_inputs = vocab_size
    device = torch.device('cuda')
    lstm_layer = nn.LSTM(num_inputs,num_hiddens,num_layers)
    model = d2l.RNNModel(lstm_layer,len(vocab))
    model = model.to(device)
    
    num_epochs,lr = 500,2
    d2l.train_ch8(model,train_iter,vocab,lr,num_epochs,device)
    d2l.plt.show()
复制代码
    perplexity 1.0, 159965.3 tokens/sec on cuda
    time travelleryou can show black is white by argument said filby
    travelleryou can show black is white by argument said filby
在这里插入图片描述

总结:

在深度循环神经网络中,内部状态的信息会被传输至当前层的下一个时间步以及后续层的当前时间步。
深度神经网络通过多层隐藏结构能够有效学习并表达更为复杂的非线性关系。

全部评论 (0)

还没有任何评论哟~