深度神经网络和循环神经网络,深层循环神经网络
深度学习和有效学习的区别
深度学习和有效学习的区别分别是:1、深度学习是:Deep Learning,是一种机器学习的技术,由于深度学习在现代机器学习中的比重和价值非常巨大,因此常常将深度学习单独拿出来说。
最初的深度学习网络是利用神经网络来解决特征层分布的一种学习过程。
通常我们了解的DNN(深度神经网络),CNN(卷积神经网络),RNN(循环神经网络),LSTM(长短期记忆网络)都是隶属于深度学习的范畴。也是现代机器学习最常用的一些手段。
通过这些手段,深度学习在视觉识别,语音识别,自然语言处理(NLP)等领域取得了使用传统机器学习算法所无法取得的成就。
2、有效学习是:所谓有效学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大,由于外部给出的信息很少。有效学习系统必须依靠自身的经历进行自我学习。
通过这种学习获取知识,改进行动方案以适应环境。有效学习最关键的三个因素是状态,行为和环境奖励。
机器学习是:Maching Learning,是实现人工智能的一种手段,也是目前被认为比较有效的实现人工智能的手段。
目前在业界使用机器学习比较突出的领域很多,例如计算机视觉、自然语言处理、推荐系统、文本分类等,大家生活中经常用到的比如高速公路上的ETC的车牌识别,苹果手机的Siri,看今日头条时给你推荐的新闻,再比如大家用天猫买东西看评论的时候的评价描述。
谷歌人工智能写作项目:神经网络伪原创

深度学习主要是学习哪些算法?
深度学习(也称为深度结构化学习或分层学习)是基于人工神经网络的更广泛的机器学习方法族的一部分**文案狗** 。学习可以是有监督的、半监督的或无监督的。
深度学习架构,例如深度神经网络、深度信念网络、循环神经网络和卷积神经网络,已经被应用于包括计算机视觉、语音识别、自然语言处理、音频识别、社交网络过滤、机器翻译、生物信息学、药物设计、医学图像分析、材料检查和棋盘游戏程序在内的领域,在这些领域中,它们的成果可与人类专家媲美,并且在某些情况下胜过人类专家。
神经网络受到生物系统中信息处理和分布式通信节点的启发。人工神经网络与生物大脑有各种不同。具体而言,神经网络往往是静态和象征性的,而大多数生物的大脑是动态(可塑)和模拟的。
定义深度学习是一类机器学习算法: 使用多个层逐步从原始输入中逐步提取更高级别的特征。例如,在图像处理中,较低层可以识别边缘,而较高层可以识别对人类有意义的部分,例如数字/字母或面部。
深度学习的职业发展方向有哪些?
当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。
本文旨在分析深度学习技术现状,研判深度学习发展趋势,并针对我国的技术水平提出发展建议。一、深度学习技术现状深度学习是本轮人工智能爆发的关键技术。
人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。
其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络的语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。
准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。深度学习是大数据时代的算法利器,成为近几年的研究热点。和传统的机器学习算法相比,深度学习技术有着两方面的优势。
一是深度学习技术可随着数据规模的增加不断提升其性能,而传统机器学习算法难以利用海量数据持续提升其性能。
二是深度学习技术可以从数据中直接提取特征,削减了对每一个问题设计特征提取器的工作,而传统机器学习算法需要人工提取特征。
因此,深度学习成为大数据时代的热点技术,学术界和产业界都对深度学习展开了大量的研究和实践工作。深度学习各类模型全面赋能基础应用。卷积神经网络和循环神经网络是两类获得广泛应用的深度神经网络模型。
计算机视觉和自然语言处理是人工智能两大基础应用。卷积神经网络广泛应用于计算机视觉领域,在图像分类、目标检测、语义分割等任务上的表现大大超越传统方法。
循环神经网络适合解决序列信息相关问题,已广泛应用于自然语言处理领域,如语音识别、机器翻译、对话系统等。深度学习技术仍不完美,有待于进一步提升。
一是深度神经网络的模型复杂度高,巨量的参数导致模型尺寸大,难以部署到移动终端设备。二是模型训练所需的数据量大,而训练数据样本获取、标注成本高,有些场景样本难以获取。
三是应用门槛高,算法建模及调参过程复杂繁琐、算法设计周期长、系统实施维护困难。四是缺乏因果推理能力,图灵奖得主、贝叶斯网络之父Judea Pearl指出当前的深度学习不过只是“曲线拟合”。
五是存在可解释性问题,由于内部的参数共享和复杂的特征抽取与组合,很难解释模型到底学习到了什么,但出于安全性考虑以及伦理和法律的需要,算法的可解释性又是十分必要的。因此,深度学习仍需解决以上问题。
二、深度学习发展趋势深度神经网络呈现层数越来越深,结构越来越复杂的发展趋势。为了不断提升深度神经网络的性能,业界从网络深度和网络结构两方面持续进行探索。
神经网络的层数已扩展到上百层甚至上千层,随着网络层数的不断加深,其学习效果也越来越好,2015年微软提出的ResNet以152层的网络深度在图像分类任务上准确率首次超过人眼。
新的网络设计结构不断被提出,使得神经网络的结构越来越复杂。
如:2014年谷歌提出了Inception网络结构、2015年微软提出了残差网络结构、2016年黄高等人提出了密集连接网络结构,这些网络结构设计不断提升了深度神经网络的性能。
深度神经网络节点功能不断丰富。为了克服目前神经网络存在的局限性,业界探索并提出了新型神经网络节点,使得神经网络的功能越来越丰富。
2017年,杰弗里辛顿提出了胶囊网络的概念,采用胶囊作为网络节点,理论上更接近人脑的行为,旨在克服卷积神经网络没有空间分层和推理能力等局限性。
2018年,DeepMind、谷歌大脑、MIT的学者联合提出了图网络的概念,定义了一类新的模块,具有关系归纳偏置功能,旨在赋予深度学习因果推理的能力。深度神经网络工程化应用技术不断深化。
深度神经网络模型大都具有上亿的参数量和数百兆的占用空间,运算量大,难以部署到智能手机、摄像头和可穿戴设备等性能和资源受限的终端类设备。
为了解决这个问题,业界采用模型压缩技术降低模型参数量和尺寸,减少运算量。目前采用的模型压缩方法包括对已训练好的模型做修剪(如剪枝、权值共享和量化等)和设计更精细的模型(如MobileNet等)两类。
深度学习算法建模及调参过程繁琐,应用门槛高。为了降低深度学习的应用门槛,业界提出了自动化机器学习(AutoML)技术,可实现深度神经网络的自动化设计,简化使用流程。
深度学习与多种机器学习技术不断融合发展。
深度学习与强化学习融合发展诞生的深度强化学习技术,结合了深度学习的感知能力和强化学习的决策能力,克服了强化学习只适用于状态为离散且低维的缺陷,可直接从高维原始数据学习控制策略。
为了降低深度神经网络模型训练所需的数据量,业界引入了迁移学习的思想,从而诞生了深度迁移学习技术。迁移学习是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。
通过将训练好的模型迁移到类似场景,实现只需少量的训练数据就可以达到较好的效果。三、未来发展建议加强图网络、深度强化学习以及生成式对抗网络等前沿技术研究。
由于我国在深度学习领域缺乏重大原创性研究成果,基础理论研究贡献不足,如胶囊网络、图网络等创新性、原创性概念是由美国专家提出,我国研究贡献不足。
在深度强化学习方面,目前最新的研究成果大都是由DeepMind和OpenAI等国外公司的研究人员提出,我国尚没有突破性研究成果。
近几年的研究热点生成式对抗网络(GAN)是由美国的研究人员Goodfellow提出,并且谷歌、facebook、twitter和苹果等公司纷纷提出了各种改进和应用模型,有力推动了GAN技术的发展,而我国在这方面取得的研究成果较少。
因此,应鼓励科研院所及企业加强深度神经网络与因果推理模型结合、生成式对抗网络以及深度强化学习等前沿技术的研究,提出更多原创性研究成果,增强全球学术研究影响力。
加快自动化机器学习、模型压缩等深度学习应用技术研究。依托国内的市场优势和企业的成长优势,针对具有我国特色的个性化应用需求,加快对深度学习应用技术的研究。
加强对自动化机器学习、模型压缩等技术的研究,加快深度学习的工程化落地应用。加强深度学习在计算机视觉领域应用研究,进一步提升目标识别等视觉任务的准确率,以及在实际应用场景中的性能。
加强深度学习在自然语言处理领域的应用研究,提出性能更优的算法模型,提升机器翻译、对话系统等应用的性能。
来源:产业智能官END更多精彩内容请登录官方网站往期精选▼1. 饮鹿网2018-2019年中国人工智能产业创新百强榜单发布!2. 饮鹿网2018-2019年中国人工智能产业Top20投资机构榜单发布!
3. 饮鹿网2018-2019年中国大数据产业创新百强榜单发布!4. 饮鹿网2018-2019年中国大数据产业Top20投资机构榜单发布!
5. 饮鹿网2018-2019年中国物联网产业创新百强榜单发布!6. 饮鹿网2018-2019年中国5G与物联网产业TOP20投资机构榜单发布!
7. 饮鹿网2018-2019年中国集成电路产业创新百强榜单发布!8. 饮鹿网2018-2019年中国集成电路产业Top20投资机构榜单发布!
9. 饮鹿网2018-2019年中国企业服务产业创新百强榜单发布!10. 饮鹿网2018-2019年中国企业服务产业TOP20投资机构榜单发布!
输入循环的三种主要控制方式
1.查询方式、2.中断方式、3.DMA方式。
循环神经网络(RNN/recurrentneuralnetwork)是一类人工神经网络,其可以通过为网络添加额外的权重来在网络图(networkgraph)中创建循环,以便维持一个内部状态。
为神经网络添加状态的好处是它们将能在序列预测问题中明确地学习和利用背景信息(context)。这类问题包括带有顺序或时间组件的问题。在这篇文章中,你将踏上了解用于深度学习的循环神经网络的旅程。
在读完这篇文章后,你将了解:用于深度学习的顶级循环神经网络的工作方式,其中包括LSTM、GRU和NTM、顶级RNN与人工神经网络中更广泛的循环(recurrence)研究的相关性。
RNN研究如何在一系列高难度问题上实现了当前最佳的表现。注意,我们并不会覆盖每一种可能的循环神经网络,而是会重点关注几种用于深度学习的循环神经网络(LSTM、GRU和NTM)以及用于理解它们的背景。
那就让我们开始吧!概述我们首先会设置循环神经网络领域的场景;然后,我们将深入了解用于深度学习的LSTM、GRU和NTM;之后我们会花点时间介绍一些与用于深度学习的RNN相关的高级主题。
常见的深度学习算法主要有哪些?
深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。
循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。
生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是最近两年十分热门的一种无监督学习算法。
深度学习和神经网络的区别是什么?
从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。
而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。
具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。
输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。
特征是由网络自己选择。
深度学习和神经网络的区别是什么?
这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。
此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
