PyTorch框架——医学图像之基于深度学习RMT神经网络眼疾识别分类系统
PyTorch框架——医学图像之基于深度学习RMT神经网络眼疾识别分类系统
** 第一步:准备数据**
iChallenge-PM 是百度大脑和中山大学中山眼科中心联合举办的iChallenge比赛中,提供的关于病理性近视(Pathologic Myopia,PM)的医疗类数据集,包含1200个受试者的眼底视网膜图片,训练、验证和测试数据集各400张。
该数据集是从AI Studio平台中下载的,具体信息如下:
将图片分成两大类:self.class_indict = [“非病理性”, “病理性近视”]
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵♂代做需求:@个人主页
第二步:搭建模型
本文选择CVPR 2024 视觉新主干!RMT:RetNet遇见视觉Transformer ,其网络结构如下:
第三步:训练代码
1)损失函数为:交叉熵损失函数
2)RMT 代码:
import torch
import torch.nn as nn
from torch.nn.common_types import _size_2_t
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
from timm.models.vision_transformer import VisionTransformer
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import time
from typing import Tuple, Union
from functools import partial
from einops import einsum
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_tensors[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
def rotate_every_two(x):
x1 = x[:, :, :, :, ::2]
x2 = x[:, :, :, :, 1::2]
x = torch.stack([-x2, x1], dim=-1)
return x.flatten(-2)
def theta_shift(x, sin, cos):
return (x * cos) + (rotate_every_two(x) * sin)
class DWConv2d(nn.Module):
def __init__(self, dim, kernel_size, stride, padding):
super().__init__()
self.conv = nn.Conv2d(dim, dim, kernel_size, stride, padding, groups=dim)
def forward(self, x: torch.Tensor):
'''
x: (b h w c)
'''
x = x.permute(0, 3, 1, 2) # (b c h w)
x = self.conv(x) # (b c h w)
x = x.permute(0, 2, 3, 1) # (b h w c)
return x
class RetNetRelPos2d(nn.Module):
def __init__(self, embed_dim, num_heads, initial_value, heads_range):
'''
recurrent_chunk_size: (clh clw)
num_chunks: (nch ncw)
clh * clw == cl
nch * ncw == nc
default: clh==clw, clh != clw is not implemented
'''
super().__init__()
angle = 1.0 / (10000 ** torch.linspace(0, 1, embed_dim // num_heads // 2))
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
self.initial_value = initial_value
self.heads_range = heads_range
self.num_heads = num_heads
decay = torch.log(
1 - 2 ** (-initial_value - heads_range * torch.arange(num_heads, dtype=torch.float) / num_heads))
self.register_buffer('angle', angle)
self.register_buffer('decay', decay)
def generate_2d_decay(self, H: int, W: int):
'''
generate 2d decay mask, the result is (HW)*(HW)
'''
index_h = torch.arange(H).to(self.decay)
index_w = torch.arange(W).to(self.decay)
grid = torch.meshgrid([index_h, index_w])
grid = torch.stack(grid, dim=-1).reshape(H * W, 2) # (H*W 2)
mask = grid[:, None, :] - grid[None, :, :] # (H*W H*W 2)
mask = (mask.abs()).sum(dim=-1)
mask = mask * self.decay[:, None, None] # (n H*W H*W)
return mask
def generate_1d_decay(self, l: int):
'''
generate 1d decay mask, the result is l*l
'''
index = torch.arange(l).to(self.decay)
mask = index[:, None] - index[None, :] # (l l)
mask = mask.abs() # (l l)
mask = mask * self.decay[:, None, None] # (n l l)
return mask
def forward(self, slen: Tuple[int], activate_recurrent=False, chunkwise_recurrent=False):
'''
slen: (h, w)
h * w == l
recurrent is not implemented
'''
if activate_recurrent:
sin = torch.sin(self.angle * (slen[0] * slen[1] - 1))
cos = torch.cos(self.angle * (slen[0] * slen[1] - 1))
retention_rel_pos = ((sin, cos), self.decay.exp())
elif chunkwise_recurrent:
index = torch.arange(slen[0] * slen[1]).to(self.decay)
sin = torch.sin(index[:, None] * self.angle[None, :]) # (l d1)
sin = sin.reshape(slen[0], slen[1], -1) # (h w d1)
cos = torch.cos(index[:, None] * self.angle[None, :]) # (l d1)
cos = cos.reshape(slen[0], slen[1], -1) # (h w d1)
mask_h = self.generate_1d_decay(slen[0])
mask_w = self.generate_1d_decay(slen[1])
retention_rel_pos = ((sin, cos), (mask_h, mask_w))
else:
index = torch.arange(slen[0] * slen[1]).to(self.decay)
sin = torch.sin(index[:, None] * self.angle[None, :]) # (l d1)
sin = sin.reshape(slen[0], slen[1], -1) # (h w d1)
cos = torch.cos(index[:, None] * self.angle[None, :]) # (l d1)
cos = cos.reshape(slen[0], slen[1], -1) # (h w d1)
mask = self.generate_2d_decay(slen[0], slen[1]) # (n l l)
retention_rel_pos = ((sin, cos), mask)
return retention_rel_pos
class VisionRetentionChunk(nn.Module):
def __init__(self, embed_dim, num_heads, value_factor=1):
super().__init__()
self.factor = value_factor
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = self.embed_dim * self.factor // num_heads
self.key_dim = self.embed_dim // num_heads
self.scaling = self.key_dim ** -0.5
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
self.lepe = DWConv2d(embed_dim, 5, 1, 2)
self.out_proj = nn.Linear(embed_dim * self.factor, embed_dim, bias=True)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.q_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.k_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.v_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.out_proj.weight)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(self, x: torch.Tensor, rel_pos, chunkwise_recurrent=False, incremental_state=None):
'''
x: (b h w c)
mask_h: (n h h)
mask_w: (n w w)
'''
bsz, h, w, _ = x.size()
(sin, cos), (mask_h, mask_w) = rel_pos
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
lepe = self.lepe(v)
k *= self.scaling
q = q.view(bsz, h, w, self.num_heads, self.key_dim).permute(0, 3, 1, 2, 4) # (b n h w d1)
k = k.view(bsz, h, w, self.num_heads, self.key_dim).permute(0, 3, 1, 2, 4) # (b n h w d1)
qr = theta_shift(q, sin, cos)
kr = theta_shift(k, sin, cos)
'''
qr: (b n h w d1)
kr: (b n h w d1)
v: (b h w n*d2)
'''
qr_w = qr.transpose(1, 2) # (b h n w d1)
kr_w = kr.transpose(1, 2) # (b h n w d1)
v = v.reshape(bsz, h, w, self.num_heads, -1).permute(0, 1, 3, 2, 4) # (b h n w d2)
qk_mat_w = qr_w @ kr_w.transpose(-1, -2) # (b h n w w)
qk_mat_w = qk_mat_w + mask_w # (b h n w w)
qk_mat_w = torch.softmax(qk_mat_w, -1) # (b h n w w)
v = torch.matmul(qk_mat_w, v) # (b h n w d2)
qr_h = qr.permute(0, 3, 1, 2, 4) # (b w n h d1)
kr_h = kr.permute(0, 3, 1, 2, 4) # (b w n h d1)
v = v.permute(0, 3, 2, 1, 4) # (b w n h d2)
qk_mat_h = qr_h @ kr_h.transpose(-1, -2) # (b w n h h)
qk_mat_h = qk_mat_h + mask_h # (b w n h h)
qk_mat_h = torch.softmax(qk_mat_h, -1) # (b w n h h)
output = torch.matmul(qk_mat_h, v) # (b w n h d2)
output = output.permute(0, 3, 1, 2, 4).flatten(-2, -1) # (b h w n*d2)
output = output + lepe
output = self.out_proj(output)
return output
class VisionRetentionAll(nn.Module):
def __init__(self, embed_dim, num_heads, value_factor=1):
super().__init__()
self.factor = value_factor
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = self.embed_dim * self.factor // num_heads
self.key_dim = self.embed_dim // num_heads
self.scaling = self.key_dim ** -0.5
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
self.lepe = DWConv2d(embed_dim, 5, 1, 2)
self.out_proj = nn.Linear(embed_dim * self.factor, embed_dim, bias=True)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_normal_(self.q_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.k_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.v_proj.weight, gain=2 ** -2.5)
nn.init.xavier_normal_(self.out_proj.weight)
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(self, x: torch.Tensor, rel_pos, chunkwise_recurrent=False, incremental_state=None):
'''
x: (b h w c)
rel_pos: mask: (n l l)
'''
bsz, h, w, _ = x.size()
(sin, cos), mask = rel_pos
assert h * w == mask.size(1)
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
lepe = self.lepe(v)
k *= self.scaling
q = q.view(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4) # (b n h w d1)
k = k.view(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4) # (b n h w d1)
qr = theta_shift(q, sin, cos) # (b n h w d1)
kr = theta_shift(k, sin, cos) # (b n h w d1)
qr = qr.flatten(2, 3) # (b n l d1)
kr = kr.flatten(2, 3) # (b n l d1)
vr = v.reshape(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4) # (b n h w d2)
vr = vr.flatten(2, 3) # (b n l d2)
qk_mat = qr @ kr.transpose(-1, -2) # (b n l l)
qk_mat = qk_mat + mask # (b n l l)
qk_mat = torch.softmax(qk_mat, -1) # (b n l l)
output = torch.matmul(qk_mat, vr) # (b n l d2)
output = output.transpose(1, 2).reshape(bsz, h, w, -1) # (b h w n*d2)
output = output + lepe
output = self.out_proj(output)
return output
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
activation_fn=F.gelu,
dropout=0.0,
activation_dropout=0.0,
layernorm_eps=1e-6,
subln=False,
subconv=True
):
super().__init__()
self.embed_dim = embed_dim
self.activation_fn = activation_fn
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
self.dropout_module = torch.nn.Dropout(dropout)
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
self.ffn_layernorm = nn.LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None
self.dwconv = DWConv2d(ffn_dim, 3, 1, 1) if subconv else None
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
if self.ffn_layernorm is not None:
self.ffn_layernorm.reset_parameters()
def forward(self, x: torch.Tensor):
'''
x: (b h w c)
'''
x = self.fc1(x)
x = self.activation_fn(x)
x = self.activation_dropout_module(x)
residual = x
if self.dwconv is not None:
x = self.dwconv(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = x + residual
x = self.fc2(x)
x = self.dropout_module(x)
return x
class RetBlock(nn.Module):
def __init__(self, retention: str, embed_dim: int, num_heads: int, ffn_dim: int, drop_path=0., layerscale=False,
layer_init_values=1e-5):
super().__init__()
self.layerscale = layerscale
self.embed_dim = embed_dim
self.retention_layer_norm = nn.LayerNorm(self.embed_dim, eps=1e-6)
assert retention in ['chunk', 'whole']
if retention == 'chunk':
self.retention = VisionRetentionChunk(embed_dim, num_heads)
else:
self.retention = VisionRetentionAll(embed_dim, num_heads)
self.drop_path = DropPath(drop_path)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=1e-6)
self.ffn = FeedForwardNetwork(embed_dim, ffn_dim)
self.pos = DWConv2d(embed_dim, 3, 1, 1)
if layerscale:
self.gamma_1 = nn.Parameter(layer_init_values * torch.ones(1, 1, 1, embed_dim), requires_grad=True)
self.gamma_2 = nn.Parameter(layer_init_values * torch.ones(1, 1, 1, embed_dim), requires_grad=True)
def forward(
self,
x: torch.Tensor,
incremental_state=None,
chunkwise_recurrent=False,
retention_rel_pos=None
):
x = x + self.pos(x)
if self.layerscale:
x = x + self.drop_path(
self.gamma_1 * self.retention(self.retention_layer_norm(x), retention_rel_pos, chunkwise_recurrent,
incremental_state))
x = x + self.drop_path(self.gamma_2 * self.ffn(self.final_layer_norm(x)))
else:
x = x + self.drop_path(
self.retention(self.retention_layer_norm(x), retention_rel_pos, chunkwise_recurrent, incremental_state))
x = x + self.drop_path(self.ffn(self.final_layer_norm(x)))
return x
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, out_dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Conv2d(dim, out_dim, 3, 2, 1)
self.norm = nn.BatchNorm2d(out_dim)
def forward(self, x):
'''
x: B H W C
'''
x = x.permute(0, 3, 1, 2).contiguous() # (b c h w)
x = self.reduction(x) # (b oc oh ow)
x = self.norm(x)
x = x.permute(0, 2, 3, 1) # (b oh ow oc)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, embed_dim, out_dim, depth, num_heads,
init_value: float, heads_range: float,
ffn_dim=96., drop_path=0., norm_layer=nn.LayerNorm, chunkwise_recurrent=False,
downsample: PatchMerging = None, use_checkpoint=False,
layerscale=False, layer_init_values=1e-5):
super().__init__()
self.embed_dim = embed_dim
self.depth = depth
self.use_checkpoint = use_checkpoint
self.chunkwise_recurrent = chunkwise_recurrent
if chunkwise_recurrent:
flag = 'chunk'
else:
flag = 'whole'
self.Relpos = RetNetRelPos2d(embed_dim, num_heads, init_value, heads_range)
# build blocks
self.blocks = nn.ModuleList([
RetBlock(flag, embed_dim, num_heads, ffn_dim,
drop_path[i] if isinstance(drop_path, list) else drop_path, layerscale, layer_init_values)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=embed_dim, out_dim=out_dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
b, h, w, d = x.size()
rel_pos = self.Relpos((h, w), chunkwise_recurrent=self.chunkwise_recurrent)
for blk in self.blocks:
if self.use_checkpoint:
tmp_blk = partial(blk, incremental_state=None, chunkwise_recurrent=self.chunkwise_recurrent,
retention_rel_pos=rel_pos)
x = checkpoint.checkpoint(tmp_blk, x)
else:
x = blk(x, incremental_state=None, chunkwise_recurrent=self.chunkwise_recurrent,
retention_rel_pos=rel_pos)
if self.downsample is not None:
x = self.downsample(x)
return x
class LayerNorm2d(nn.Module):
def __init__(self, dim):
super().__init__()
self.norm = nn.LayerNorm(dim, eps=1e-6)
def forward(self, x: torch.Tensor):
'''
x: (b c h w)
'''
x = x.permute(0, 2, 3, 1).contiguous() # (b h w c)
x = self.norm(x) # (b h w c)
x = x.permute(0, 3, 1, 2).contiguous()
return x
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Sequential(
nn.Conv2d(in_chans, embed_dim // 2, 3, 2, 1),
nn.BatchNorm2d(embed_dim // 2),
nn.GELU(),
nn.Conv2d(embed_dim // 2, embed_dim // 2, 3, 1, 1),
nn.BatchNorm2d(embed_dim // 2),
nn.GELU(),
nn.Conv2d(embed_dim // 2, embed_dim, 3, 2, 1),
nn.BatchNorm2d(embed_dim),
nn.GELU(),
nn.Conv2d(embed_dim, embed_dim, 3, 1, 1),
nn.BatchNorm2d(embed_dim)
)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).permute(0, 2, 3, 1) # (b h w c)
return x
class VisRetNet(nn.Module):
def __init__(self, in_chans=3, num_classes=2,
embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
init_values=[1, 1, 1, 1], heads_ranges=[3, 3, 3, 3], mlp_ratios=[3, 3, 3, 3], drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
patch_norm=True, use_checkpoints=[False, False, False, False],
chunkwise_recurrents=[True, True, False, False], projection=1024,
layerscales=[False, False, False, False], layer_init_values=1e-6):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dims[0]
self.patch_norm = patch_norm
self.num_features = embed_dims[-1]
self.mlp_ratios = mlp_ratios
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0],
norm_layer=norm_layer if self.patch_norm else None)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
embed_dim=embed_dims[i_layer],
out_dim=embed_dims[i_layer + 1] if (i_layer < self.num_layers - 1) else None,
depth=depths[i_layer],
num_heads=num_heads[i_layer],
init_value=init_values[i_layer],
heads_range=heads_ranges[i_layer],
ffn_dim=int(mlp_ratios[i_layer] * embed_dims[i_layer]),
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
chunkwise_recurrent=chunkwise_recurrents[i_layer],
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoints[i_layer],
layerscale=layerscales[i_layer],
layer_init_values=layer_init_values
)
self.layers.append(layer)
self.proj = nn.Linear(self.num_features, projection)
self.norm = nn.BatchNorm2d(projection)
self.swish = MemoryEfficientSwish()
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(projection, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
try:
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
except:
pass
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x = self.patch_embed(x)
for layer in self.layers:
x = layer(x)
x = self.proj(x) # (b h w c)
x = self.norm(x.permute(0, 3, 1, 2)).flatten(2, 3) # (b c h*w)
x = self.swish(x)
x = self.avgpool(x) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
@register_model
def RMT_T3():
model = VisRetNet(
embed_dims=[64, 128, 256, 512],
depths=[2, 2, 8, 2],
num_heads=[4, 4, 8, 16],
init_values=[2, 2, 2, 2],
heads_ranges=[4, 4, 6, 6],
mlp_ratios=[3, 3, 3, 3],
drop_path_rate=0.1,
chunkwise_recurrents=[True, True, False, False],
layerscales=[False, False, False, False]
)
model.default_cfg = _cfg()
return model
@register_model
def RMT_S():
model = VisRetNet(
embed_dims=[64, 128, 256, 512],
depths=[3, 4, 18, 4],
num_heads=[4, 4, 8, 16],
init_values=[2, 2, 2, 2],
heads_ranges=[4, 4, 6, 6],
mlp_ratios=[4, 4, 3, 3],
drop_path_rate=0.15,
chunkwise_recurrents=[True, True, True, False],
layerscales=[False, False, False, False]
)
model.default_cfg = _cfg()
return model
@register_model
def RMT_M2():
model = VisRetNet(
embed_dims=[80, 160, 320, 512],
depths=[4, 8, 25, 8],
num_heads=[5, 5, 10, 16],
init_values=[2, 2, 2, 2],
heads_ranges=[5, 5, 6, 6],
mlp_ratios=[4, 4, 3, 3],
drop_path_rate=0.4,
chunkwise_recurrents=[True, True, True, False],
layerscales=[False, False, True, True],
layer_init_values=1e-6
)
model.default_cfg = _cfg()
return model
@register_model
def RMT_L6():
model = VisRetNet(
embed_dims=[112, 224, 448, 640],
depths=[4, 8, 25, 8],
num_heads=[7, 7, 14, 20],
init_values=[2, 2, 2, 2],
heads_ranges=[6, 6, 6, 6],
mlp_ratios=[4, 4, 3, 3],
drop_path_rate=0.5,
chunkwise_recurrents=[True, True, True, False],
layerscales=[False, False, True, True],
layer_init_values=1e-6
)
model.default_cfg = _cfg()
return model

第四步:统计训练过程中验证集准确率和loss变化
正确率高达95%
第五步:搭建GUI界面
第六步:整个工程的内容
有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码
** 项目完整文件下载请见演示与介绍视频的简介处给出**:➷➷➷
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵♂代做需求:@个人主页
