Advertisement

深度学习论文: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks及其PyTorch实现

阅读量:

深度学习领域的研究论文:《基于标量的卷积神经网络重新思考》及其PyTorch实现

1 概述

论文提出了一种多维度混合的模型放缩方法,在综合考虑网络结构复杂度计算资源占用以及图像质量的基础上实现了平衡优化。

在这里插入图片描述

相较于其他的网络结构,EfficientNet在ImageNet的性能更为优异。

在这里插入图片描述

2 Compound Scaling

Model Scaling可以表示为一个给定资源约束的模型精度最大化问题。即

在这里插入图片描述

其中,w、d、r 分别是网络宽度,网络高度,分辨率的倍率。

之前的研究主要针对 Depth (d), Width (w) 和 Resolution ®这三个关键参数中的单一维度进行网络调节。观察下图可知,在单独优化某一个参数时能够获得较好的效果(单一维度调节的效果相对较好),然而这些改进的效果在达到一定水平后会趋于平缓(约80%左右)。

在这里插入图片描述

然而综合平衡三个关键参数的同时优化可能会导致较高的计算成本。为此建议采用一种复合系数体系(Compound Coefficient Framework),用于调节这三个核心指标的增长幅度。

在这里插入图片描述

其中,在\alpha, \beta, \gamma均为常数的情况下(这些常数可以通过grid search方法获得)。混合系数\phi则可由人工进行调节设置。卷积操作的计算量(FLOPS)与其相关,并与d, w^2, r^2之间存在正比例关系。其复杂度可近似表示为(\alpha, \beta^2, \gamma^2)^\phi的形式。在上述约束条件下设定好混合系数\phi后(即设置好该参数),网络的整体计算量大致相当于原来的2^\phi倍。

3 EfficientNet

B0网络结构: φ = 1,α = 1.2; β =1.1; γ = 1.15

在这里插入图片描述
在这里插入图片描述

PyTorch代码:

复制代码
    import math
    import torch
    import torch.nn as nn
    
    
    class Swish(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)
    
    
    def ConvBNAct(in_channels,out_channels,kernel_size=3, stride=1,groups=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=groups),
            nn.BatchNorm2d(out_channels),
            Swish()
        )
    
    
    def Conv1x1BNAct(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels),
            Swish()
        )
    
    def Conv1x1BN(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels)
        )
    
    def Conv1(in_planes, places, stride=2):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
        nn.BatchNorm2d(places),
        Swish(),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )
    
    class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.shape[0], -1)
    
    
    class SEBlock(nn.Module):
    def __init__(self, channels, ratio=16):
        super().__init__()
        mid_channels = channels // ratio
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=True),
            Swish(),
            nn.Conv2d(mid_channels, channels, kernel_size=1, stride=1, padding=0, bias=True),
        )
    
    def forward(self, x):
        return x * torch.sigmoid(self.se(x))
    
    
    class MBConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, expansion_factor=6):
        super(MBConvBlock, self).__init__()
        self.stride = stride
        self.expansion_factor = expansion_factor
        mid_channels = (in_channels * expansion_factor)
    
        self.bottleneck = nn.Sequential(
            Conv1x1BNAct(in_channels, mid_channels),
            ConvBNAct(mid_channels, mid_channels, kernel_size, stride, groups=mid_channels),
            SEBlock(mid_channels),
            Conv1x1BN(mid_channels, out_channels)
        )
    
        if self.stride == 1:
            self.shortcut = Conv1x1BN(in_channels, out_channels)
    
    def forward(self, x):
        out = self.bottleneck(x)
        out = (out + self.shortcut(x)) if self.stride==1 else out
        return out
    
    
    class EfficientNet(nn.Module):
    params = {
        'efficientnet_b0': (1.0, 1.0, 224, 0.2),
        'efficientnet_b1': (1.0, 1.1, 240, 0.2),
        'efficientnet_b2': (1.1, 1.2, 260, 0.3),
        'efficientnet_b3': (1.2, 1.4, 300, 0.3),
        'efficientnet_b4': (1.4, 1.8, 380, 0.4),
        'efficientnet_b5': (1.6, 2.2, 456, 0.4),
        'efficientnet_b6': (1.8, 2.6, 528, 0.5),
        'efficientnet_b7': (2.0, 3.1, 600, 0.5),
    }
    def __init__(self, subtype='efficientnet_b0', num_classes=1000):
        super(EfficientNet, self).__init__()
        self.width_coeff = self.params[subtype][0]
        self.depth_coeff = self.params[subtype][1]
        self.dropout_rate = self.params[subtype][3]
        self.depth_div = 8
    
        self.stage1 = ConvBNAct(3, self._calculate_width(32), kernel_size=3, stride=2)
        self.stage2 = self.make_layer(self._calculate_width(32), self._calculate_width(16), kernel_size=3, stride=1, block=self._calculate_depth(1))
        self.stage3 = self.make_layer(self._calculate_width(16), self._calculate_width(24), kernel_size=3, stride=2, block=self._calculate_depth(2))
        self.stage4 = self.make_layer(self._calculate_width(24), self._calculate_width(40), kernel_size=5, stride=2, block=self._calculate_depth(2))
        self.stage5 = self.make_layer(self._calculate_width(40), self._calculate_width(80), kernel_size=3, stride=2, block=self._calculate_depth(3))
        self.stage6 = self.make_layer(self._calculate_width(80), self._calculate_width(112), kernel_size=5, stride=1, block=self._calculate_depth(3))
        self.stage7 = self.make_layer(self._calculate_width(112), self._calculate_width(192), kernel_size=5, stride=2, block=self._calculate_depth(4))
        self.stage8 = self.make_layer(self._calculate_width(192), self._calculate_width(320), kernel_size=3, stride=1, block=self._calculate_depth(1))
    
        self.classifier = nn.Sequential(
            Conv1x1BNAct(320, 1280),
            nn.AdaptiveAvgPool2d(1),
            nn.Dropout2d(0.2),
            Flatten(),
            nn.Linear(1280, num_classes)
        )
    
        self.init_weights()
    
    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.weight.shape[1])
                nn.init.uniform_(m.weight, -init_range, init_range)
    
    def _calculate_width(self, x):
        x *= self.width_coeff
        new_x = max(self.depth_div, int(x + self.depth_div / 2) // self.depth_div * self.depth_div)
        if new_x < 0.9 * x:
            new_x += self.depth_div
        return int(new_x)
    
    def _calculate_depth(self, x):
        return int(math.ceil(x * self.depth_coeff))
    
    def make_layer(self, in_places, places, kernel_size, stride, block):
        layers = []
        layers.append(MBConvBlock(in_places, places, kernel_size, stride))
        for i in range(1, block):
            layers.append(MBConvBlock(places, places, kernel_size))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        x = self.stage1(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.stage5(x)
        x = self.stage6(x)
        x = self.stage7(x)
        x = self.stage8(x)
        out = self.classifier(x)
        return out
    
    if __name__=='__main__':
    model = EfficientNet('efficientnet_b0')
    print(model)
    
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

全部评论 (0)

还没有任何评论哟~