Advertisement

UA OPTI570 量子力学25 2-level System

阅读量:

UA OPTI570 量子力学25 2-level System

    • 2-level System与Rabi oscillation

2-level System与Rabi oscillation

Spin-1/2的方法可以用于任意二维态空间(称之为2-level system),考虑\mathcal{E}_{2},假设它的基为\{|u_1 \rangle,|u_2 \rangle\},在这组基下,任意量子态可以表示为一个有两个元素的列向量,任意算符可以表示为2 \times 2的矩阵,于是在这种与Spin-1/2类似的数学模型下,Spin-1/2的相关结果可以直接移植到2-level system中。

\forall |\psi \rangle \in \mathcal{E}_2|\psi \rangle=a|u_1 \rangle+b|u_2 \rangle,\exists a,b \in \mathbb{C},并且\exists \theta ,\phi,
\begin{aligned} a = \cos \frac{\theta}{2} e^{-\frac{i \phi}{2}},b = \sin \frac{\theta}{2} e^{\frac{i \phi}{2}} \end{aligned}

注意\theta,\phi是任意参数坐标,并不一定代表真实物理空间中的角度。Pauli Spin Matrix的期望为
\langle \sigma_x \rangle = \sin \theta \cos \phi \\ \langle \sigma_y \rangle = \sin \theta \sin \phi \\ \langle \sigma_z \rangle = \cos \theta

于是Bloch vector为
\langle \sigma \rangle = \left[ \begin{matrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{matrix} \right]

例1 假设H=E_1|u_1 \rangle \langle u_1 |+E_2|u_2 \rangle \langle u_2 |,它的矩阵表示为diag(E_1,E_2),假设|\psi(0) \rangle=|u_1 \rangle
|\psi(t) \rangle = e^{-iHt/\hbar}|\psi(0) \rangle=e^{-iE_1t/\hbar}|u_1 \rangle

这是一个很有趣的结果,在有像这道题定义的哈密顿量的系统中,如果初始量子态是某个本征态,那么量子态并不会随时间演化到另一个本征态,而是会一直停留在这个本征子空间中,也就是说P(E_2)=0

例2 假设H=E_1|u_1 \rangle \langle u_1 |+E_2|u_2 \rangle \langle u_2 |+\epsilon \hat 1,则延用例1的设定,
|\psi(t) \rangle = e^{-i(E_1+\epsilon)t/\hbar}|u_1 \rangle

也就是同时同量改变两个本征态的本征值不会影响例1的结论。

例3 假设H=E_1|u_1 \rangle \langle u_1 |+E_2|u_2 \rangle \langle u_2 |+W,其中算符W=W_{12}|u_1 \rangle \langle u_2 |+W_{21}|u_2 \rangle \langle u_1 |,则哈密顿量的矩阵表示为
\left[ \begin{matrix} E_1 & W_{12} \\ W_{21} & E_2 \end{matrix} \right]=\left[ \begin{matrix} E_1 & W_{21}^* \\ W_{21} & E_2 \end{matrix} \right] = \left[ \begin{matrix} \frac{E_1+E_2}{2}+\frac{E_1-E_2}{2} & W_{12} \\ W_{21} & \frac{E_1+E_2}{2}-\frac{E_1-E_2}{2}\end{matrix} \right]

E_m=\frac{E_1+E_2}{2},\delta = \frac{E_1-E_2}{2}, 则
H = E_m \hat 1+\left[ \begin{matrix} \delta & W_{21}^* \\ W_{21} & -\delta\end{matrix} \right]=E_m \hat 1+\sqrt{\delta^2+|W_{21}|^2}\sigma_u \\ \sigma_u = \frac{1}{\sqrt{\delta^2+|W_{21}|^2}}\left[ \begin{matrix} \frac{W_{12}+W_{21}}{2} \\ i\frac{W_{12}-W_{21}}{2} \\ \delta \end{matrix} \right]

H的本征值为
E_+=E_m+\sqrt{\delta^2+|W_{21}|^2} \\ E_1 = E_m - \sqrt{\delta^2+|W_{21}|^2}

本征态为
|\psi_+ \rangle= \cos \frac{\theta}{2} e^{-\frac{i \phi}{2}}|u_1 \rangle+ \sin \frac{\theta}{2} e^{\frac{i \phi}{2}} |u_2 \rangle \\ |\psi_- \rangle=- \sin \frac{\theta}{2} e^{-\frac{i \phi}{2}}|u_1 \rangle+ \cos \frac{\theta}{2} e^{\frac{i \phi}{2}} |u_2 \rangle \\ \theta = \arctan \frac{|W_{21}|}{\delta},\phi = Arg(W_{12})

下面讨论任意量子态的演化规律:假设初始态为
|\psi(0) \rangle = a_1(0)|u_1 \rangle + a_2(0)|u_2 \rangle

目标是得到
|\psi(t) \rangle = a_1(t)|u_1 \rangle + a_2(t)|u_2 \rangle

这里的系数含义是状态转移概率幅,从0时刻到t时刻,由量子态|u_1 \rangle转移到|u_2 \rangle与量子态|u_2 \rangle转移到|u_1 \rangle的概率为
P_{1 \to 2} (t)=|a_2(t)|^2,P_{2 \to 1}(t)=|a_1(t)|^2

要做这个计算有下面两种方法:

  1. |\psi(0) \rangle变换到基\{|\psi_+ \rangle,|\psi_- \rangle\}的表象下,然后使用Time-evolving operator U(t)
  2. 将Time-evolving operator U(t)变换到基\{|u_1 \rangle,|u_2 \rangle\}的表象下,然后应用|\psi(t) \rangle = U(t)|\psi(0) \rangle

结果为
\begin{cases} a_1(t)=a_1(0) \left( \cos^2 \frac{\theta}{2} e^{-i \Omega t/2}+ \sin^2 \frac{\theta}{2} e^{i \Omega t/2}\right)-ia_2(0)\sin \theta e^{-i \phi}\sin \frac{\Omega t}{2} \\ a_2(t)=a_2(0) \left( \sin^2 \frac{\theta}{2} e^{-i \Omega t/2}+ \cos^2 \frac{\theta}{2} e^{i \Omega t/2}\right)-ia_1(0)\sin \theta e^{i \phi}\sin \frac{\Omega t}{2}\end{cases}

其中
\Omega = \frac{E_+-E_-}{\hbar}=\frac{2}{\hbar}\sqrt{\delta^2+|W_{21}|^2}

考虑一个特例,比如a_1(0)=1,a_2(0)=0,则
P_{1 \to 2}(t) = \sin^2 \theta \sin^2 \frac{\Omega t}{2},P_{1 \to 1}=1-P_{1 \to 2}(t)

定义
\Delta = \frac{E_1-E_2}{\hbar} = \frac{2 \delta }{\hbar} \\ \Omega_0 = \frac{2}{\hbar}W_{21} = |\Omega_0|e^{i \phi}

则哈密顿量为
H_{\{u\}} = \left[ \begin{matrix} E_m \\ & E_m \end{matrix} \right] +\frac{\hbar}{2}\left[ \begin{matrix} \Delta & \Omega_0^* \\ \Omega_0 & \- \Delta \end{matrix} \right] \\ E_{\pm} = E_m \pm \frac{\hbar}{2}\Omega,\ \Omega = \sqrt{\Delta^2+|\Omega_0|^2}

状态转移概率为
P_{1 \to 2}(t)=\frac{|\Omega_0|^2}{\Omega^2}\sin^2 \frac{\Omega t}{2}

这个公式被称为Rabi公式,在2-level system中处理状态转移时这个公式具有通用性,其中\Omega_0被称为Resonant Rabi frequency;\Omega被称为Rabi frequency或者generalized Rabi frequency;\Delta被称为detuning;这个公式是Rabi Oscillation模型的一部分;\frac{|\Omega_0|^2}{\Omega^2}被称为Rabi oscillations的振幅;在\Delta=0,\Omega=\Omega_0时,称P_{1 \to 2}(t)的半个周期,t=\frac{\pi}{|\Omega_0|}\pi-pulse,整个周期为2\pi-pulse。

Bloch vector为
\langle \sigma \rangle = (\langle \sigma_x \rangle,\langle \sigma_y \rangle,\langle \sigma_z \rangle)

在量子态|\psi \rangle=a_1|u_1 \rangle+a_2 |u_2 \rangle中,
\langle \sigma_z \rangle = \left[\begin{matrix} a_1^* & a_2^* \end{matrix} \right]\left[\begin{matrix} 1 & 0 \\ 0 & -1 \end{matrix} \right]\left[\begin{matrix} a_1 \\ a_2 \end{matrix} \right]=|a_1|^2-|a_2|^2

类似地,
\langle \sigma_x \rangle=a_1^*a_2+a_1a_2^*,\langle \sigma_y \rangle=-ia_1^*a_2+ia_1a_2^*

全部评论 (0)

还没有任何评论哟~