Advertisement

阿里云天池大赛赛题(机器学习)——工业蒸汽量预测(完整代码)

阅读量:

机器学习建模与预测总结
数据预处理
特征工程:

  • 删除相关性较低的特征(如V5)。
  • 对特征进行Box-Cox变换以满足正态性要求。
  • 对目标变量(发电量)进行对数变换以解决正态性问题。
    异常值与缺失值处理:
  • 使用箱线图识别并删除异常值。
  • 通过网格搜索优化超参数以填补缺失值。
    建模前准备:
  • 数据拆分为训练集和测试集。
  • 使用多项式扩展器进一步提升模型性能。
    常用机器学习模型
    线性回归(Linear Regression):
  • 简单易用且 interpretable。
  • 缺点:容易过拟合复杂数据。
    岭回归(Ridge Regression):
  • 通过L2正则化解决多重共线性问题。
  • 适用于变量间高度相关的情况。
    Lasso Regression:
  • 通过L1正则化进行特征选择。
  • 可以自动剔除不重要的特征。
    ElasticNet:
  • 结合L1和L2正则化的优势。
  • 在变量选择和收缩方面表现良好。
    随机森林(Random Forest):
  • 高强度集成方法。
  • 能捕捉非线性关系且鲁棒性强。
    XGBoost:
  • 强大的树模型算法。
  • 提供灵活的调优接口和高效训练机制。
    LightGBM:
  • 类似于XGBoost但效率更高。
  • 支持梯度提升树构建策略。
    AdaBoost:
    强化弱学习器的思想。
    迭代调整样本权重以提高整体精度。
    Gradient Boosting (GBM):
    强化学习器结合梯度下降优化过程。
    在分类任务中表现优异。
    Stacking 模型融合:
    使用多个基础模型进行集成预测,并通过Meta learner进一步优化结果。该方法在验证集上取得了较高的均方误差(MSE),证明其有效性。
    模型评估与优化
    使用K折交叉验证选择最佳参数。
    通过残差分析评估模型拟合效果,并识别潜在异常或过拟合情况。
    使用均方误差作为主要评估指标,并结合R²评分函数综合衡量模型性能和预测能力。
    总结
    本文详细介绍了机器学习建模与预测的关键步骤和常用算法。通过对数据预处理到模型融合技术的全面分析,展示了如何系统地构建高效的预测模型。关键点包括:
    数据预处理的重要性及具体操作;
    各类机器学习算法的特点及其适用场景;
    模型融合技术在提升预测性能方面的优势;
    从数据探索到建模再到评估的完整流程;
    这些内容为读者提供了理论基础和技术实现思路参考。

目录

  • 赛题背景
  • 加载必要的库
    • 读取训练数据集与测试数据集的CSV文件

    • 将训练数据集与测试数据集进行合并

    • 剔除对模型性能影响较小的特征字段

    • 通过最大最小归一化方法对各个特征进行标准化处理

    • 生成散点图矩阵用于直观分析各变量间的关联关系

    • 应用Box-Cox变换使其满足正态分布假设

    • 计算分位数并绘制箱线图以展示分布情况(基于正态分布)

    • 标签数据对数变换数据,使数据更符合正态,并画图展示

    • 获取训练和测试数据

    • 评分函数

    • 获取异常数据,并画图

    • 使用删除异常的数据进行模型训练

    • 采用网格搜索训练模型

    • 岭回归

    • Lasso回归

    • ElasticNet 回归

    • SVR回归

    • K近邻

    • GBDT 模型

    • XGB模型

    • 随机森林模型

    • 模型预测--多模型Bagging

    • Bagging预测

    • 模型融合Stacking

      • 模型融合stacking简单示例
      • 工业蒸汽多模型融合stacking
      • 模型融合stacking基学习器
      • 模型融合stacking预测
      • 加载数据
      • K折交叉验证
      • 训练集和测试集数据
      • 使用lr_reg和lgb_reg进行融合预测

赛题背景

主要通过燃料燃烧加热水生成蒸汽的过程中,在能量转化过程中会产生一定的压力变化。这些压力变化推动汽轮机旋转运转,并带动发电机运转从而产生电能。整个系统中能量转化过程中的关键因素是锅炉的燃烧效率这一指标。具体而言,在影响锅炉运行效率的因素中涉及诸多方面的是锅炉床温、床压以及炉膛温度等各项参数的变化情况。该挑战的目标在于利用一批包含38个特征变量的锅炉传感器数据集进行建模分析,并根据训练好的模型预测出对应的蒸汽流量数值结果。由于该预测任务的对象是一个连续型数值型输出变量的问题场景,在这种有标签数据支持下所建立起来的就是一种典型的回归分析问题类型。典型的回归分析模型所采用的主要算法包括线性回归算法、脊线回归算法以及LASSO正则化方法等多种技术手段作为其基础理论框架。

全代码

常见的机器学习实战方案通常涉及三个关键环节:首先是数据预处理(Data Preprocessing),其次是特征提取与优化(Feature Extraction & Optimization),最后是模型选择与评估(Model Selection & Evaluation)。

导入包

复制代码
    import warnings
    warnings.filterwarnings("ignore")
    import matplotlib.pyplot as plt
    plt.rcParams.update({'figure.max_open_warning': 0})
    import seaborn as sns
    
    # modelling
    import pandas as pd
    import numpy as np
    from scipy import stats
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import GridSearchCV, RepeatedKFold, cross_val_score,cross_val_predict,KFold
    from sklearn.metrics import make_scorer,mean_squared_error
    from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
    from sklearn.svm import LinearSVR, SVR
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
    from xgboost import XGBRegressor
    from sklearn.preprocessing import PolynomialFeatures,MinMaxScaler,StandardScaler

导入数据

复制代码
    #load_dataset
    with open("./zhengqi_train.txt")  as fr:
    data_train=pd.read_table(fr,sep="\t")
    with open("./zhengqi_test.txt") as fr_test:
    data_test=pd.read_table(fr_test,sep="\t")

合并数据

复制代码
    #merge train_set and test_set
    data_train["oringin"]="train"
    data_test["oringin"]="test"
    data_all=pd.concat([data_train,data_test],axis=0,ignore_index=True)

删除相关特征

复制代码
    data_all.drop(["V5","V9","V11","V17","V22","V28"],axis=1,inplace=True)

数据最大最小归一化

复制代码
    # normalise numeric columns
    cols_numeric=list(data_all.columns)
    cols_numeric.remove("oringin")
    def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())
    scale_cols = [col for col in cols_numeric if col!='target']
    data_all[scale_cols] = data_all[scale_cols].apply(scale_minmax,axis=0)

画图:探查特征和标签相关信息

复制代码
    #Check effect of Box-Cox transforms on distributions of continuous variables
    
    fcols = 6
    frows = len(cols_numeric)-1
    plt.figure(figsize=(4*fcols,4*frows))
    i=0
    
    for var in cols_numeric:
    if var!='target':
        dat = data_all[[var, 'target']].dropna()
        
        i+=1
        plt.subplot(frows,fcols,i)
        sns.distplot(dat[var] , fit=stats.norm);
        plt.title(var+' Original')
        plt.xlabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(dat[var], plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
        plt.xlabel('')
        plt.ylabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(dat[var], dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
     
        i+=1
        plt.subplot(frows,fcols,i)
        trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
        trans_var = scale_minmax(trans_var)      
        sns.distplot(trans_var , fit=stats.norm);
        plt.title(var+' Tramsformed')
        plt.xlabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(trans_var, plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
        plt.xlabel('')
        plt.ylabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(trans_var, dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))
在这里插入图片描述

对特征进行Box-Cox变换,使其满足正态性

Box-Cox变换是一种广义幂变换方法,其由Box和Cox于1964年提出,并常用于统计建模中的数据转换手段。这种方法特别适用于处理响应变量不服从正态分布的情况。经过Box-Cox变换后,可以一定程度减少不可观测误差与预测变量之间的相关性。其主要特点在于引入了一个参数,并可通过该参数估计值来确定应采取的数据转换形式。该方法显著改善了数据的正态性、对称性和方差齐性,在许多实际应用中表现良好。

复制代码
    cols_transform=data_all.columns[0:-2]
    for col in cols_transform:   
    # transform column
    data_all.loc[:,col], _ = stats.boxcox(data_all.loc[:,col]+1)

标签数据统计转换后的数据,计算分位数画图展示(基于正态分布)

复制代码
    print(data_all.target.describe())
    
    plt.figure(figsize=(12,4))
    plt.subplot(1,2,1)
    sns.distplot(data_all.target.dropna() , fit=stats.norm);
    plt.subplot(1,2,2)
    _=stats.probplot(data_all.target.dropna(), plot=plt)
在这里插入图片描述

标签数据对数变换数据,使数据更符合正态,并画图展示

复制代码
    #Log Transform SalePrice to improve normality
    sp = data_train.target
    data_train.target1 =np.power(1.5,sp)
    print(data_train.target1.describe())
    
    plt.figure(figsize=(12,4))
    plt.subplot(1,2,1)
    sns.distplot(data_train.target1.dropna(),fit=stats.norm);
    plt.subplot(1,2,2)
    _=stats.probplot(data_train.target1.dropna(), plot=plt)
在这里插入图片描述

获取训练和测试数据

复制代码
    # function to get training samples
    def get_training_data():
    # extract training samples
    from sklearn.model_selection import train_test_split
    df_train = data_all[data_all["oringin"]=="train"]
    df_train["label"]=data_train.target1
    # split SalePrice and features
    y = df_train.target
    X = df_train.drop(["oringin","target","label"],axis=1)
    X_train,X_valid,y_train,y_valid=train_test_split(X,y,test_size=0.3,random_state=100)
    return X_train,X_valid,y_train,y_valid
    
    # extract test data (without SalePrice)
    def get_test_data():
    df_test = data_all[data_all["oringin"]=="test"].reset_index(drop=True)
    return df_test.drop(["oringin","target"],axis=1)

评分函数

复制代码
    from sklearn.metrics import make_scorer
    # metric for evaluation
    def rmse(y_true, y_pred):
    diff = y_pred - y_true
    sum_sq = sum(diff**2)    
    n = len(y_pred)   
    
    return np.sqrt(sum_sq/n)
    def mse(y_ture,y_pred):
    return mean_squared_error(y_ture,y_pred)
    
    # scorer to be used in sklearn model fitting
    rmse_scorer = make_scorer(rmse, greater_is_better=False)
    mse_scorer = make_scorer(mse, greater_is_better=False)

从指定链接中提取与分析相关的异常数据样本,并按照既定的标准生成相应的统计图表

复制代码
    # function to detect outliers based on the predictions of a model
    def find_outliers(model, X, y, sigma=3):
    
    # predict y values using model
    try:
        y_pred = pd.Series(model.predict(X), index=y.index)
    # if predicting fails, try fitting the model first
    except:
        model.fit(X,y)
        y_pred = pd.Series(model.predict(X), index=y.index)
        
    # calculate residuals between the model prediction and true y values
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()
    
    # calculate z statistic, define outliers to be where |z|>sigma
    z = (resid - mean_resid)/std_resid    
    outliers = z[abs(z)>sigma].index
    
    # print and plot the results
    print('R2=',model.score(X,y))
    print('rmse=',rmse(y, y_pred))
    print("mse=",mean_squared_error(y,y_pred))
    print('---------------------------------------')
    
    print('mean of residuals:',mean_resid)
    print('std of residuals:',std_resid)
    print('---------------------------------------')
    
    print(len(outliers),'outliers:')
    print(outliers.tolist())
    
    plt.figure(figsize=(15,5))
    ax_131 = plt.subplot(1,3,1)
    plt.plot(y,y_pred,'.')
    plt.plot(y.loc[outliers],y_pred.loc[outliers],'ro')
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('y')
    plt.ylabel('y_pred');
    
    ax_132=plt.subplot(1,3,2)
    plt.plot(y,y-y_pred,'.')
    plt.plot(y.loc[outliers],y.loc[outliers]-y_pred.loc[outliers],'ro')
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('y')
    plt.ylabel('y - y_pred');
    
    ax_133=plt.subplot(1,3,3)
    z.plot.hist(bins=50,ax=ax_133)
    z.loc[outliers].plot.hist(color='r',bins=50,ax=ax_133)
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('z')
    
    plt.savefig('outliers.png')
    
    return outliers
复制代码
    # get training data
    from sklearn.linear_model import Ridge
    X_train, X_valid,y_train,y_valid = get_training_data()
    test=get_test_data()
    
    # find and remove outliers using a Ridge model
    outliers = find_outliers(Ridge(), X_train, y_train)
    
    # permanently remove these outliers from the data
    #df_train = data_all[data_all["oringin"]=="train"]
    #df_train["label"]=data_train.target1
    #df_train=df_train.drop(outliers)
    X_outliers=X_train.loc[outliers]
    y_outliers=y_train.loc[outliers]
    X_t=X_train.drop(outliers)
    y_t=y_train.drop(outliers)
在这里插入图片描述

使用删除异常的数据进行模型训练

复制代码
    def get_trainning_data_omitoutliers():
    y1=y_t.copy()
    X1=X_t.copy()
    return X1,y1

采用网格搜索训练模型

复制代码
    from sklearn.preprocessing import StandardScaler
    def train_model(model, param_grid=[], X=[], y=[], 
                splits=5, repeats=5):
    
    # get unmodified training data, unless data to use already specified
    if len(y)==0:
        X,y = get_trainning_data_omitoutliers()
        #poly_trans=PolynomialFeatures(degree=2)
        #X=poly_trans.fit_transform(X)
        #X=MinMaxScaler().fit_transform(X)
    
    # create cross-validation method
    rkfold = RepeatedKFold(n_splits=splits, n_repeats=repeats)
    
    # perform a grid search if param_grid given
    if len(param_grid)>0:
        # setup grid search parameters
        gsearch = GridSearchCV(model, param_grid, cv=rkfold,
                               scoring="neg_mean_squared_error",
                               verbose=1, return_train_score=True)
    
        # search the grid
        gsearch.fit(X,y)
    
        # extract best model from the grid
        model = gsearch.best_estimator_        
        best_idx = gsearch.best_index_
    
        # get cv-scores for best model
        grid_results = pd.DataFrame(gsearch.cv_results_)       
        cv_mean = abs(grid_results.loc[best_idx,'mean_test_score'])
        cv_std = grid_results.loc[best_idx,'std_test_score']
    
    # no grid search, just cross-val score for given model    
    else:
        grid_results = []
        cv_results = cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=rkfold)
        cv_mean = abs(np.mean(cv_results))
        cv_std = np.std(cv_results)
    
    # combine mean and std cv-score in to a pandas series
    cv_score = pd.Series({'mean':cv_mean,'std':cv_std})
    
    # predict y using the fitted model
    y_pred = model.predict(X)
    
    # print stats on model performance         
    print('----------------------')
    print(model)
    print('----------------------')
    print('score=',model.score(X,y))
    print('rmse=',rmse(y, y_pred))
    print('mse=',mse(y, y_pred))
    print('cross_val: mean=',cv_mean,', std=',cv_std)
    
    # residual plots
    y_pred = pd.Series(y_pred,index=y.index)
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()
    z = (resid - mean_resid)/std_resid    
    n_outliers = sum(abs(z)>3)
    
    plt.figure(figsize=(15,5))
    ax_131 = plt.subplot(1,3,1)
    plt.plot(y,y_pred,'.')
    plt.xlabel('y')
    plt.ylabel('y_pred');
    plt.title('corr = {:.3f}'.format(np.corrcoef(y,y_pred)[0][1]))
    ax_132=plt.subplot(1,3,2)
    plt.plot(y,y-y_pred,'.')
    plt.xlabel('y')
    plt.ylabel('y - y_pred');
    plt.title('std resid = {:.3f}'.format(std_resid))
    
    ax_133=plt.subplot(1,3,3)
    z.plot.hist(bins=50,ax=ax_133)
    plt.xlabel('z')
    plt.title('{:.0f} samples with z>3'.format(n_outliers))
    
    return model, cv_score, grid_results
复制代码
    # places to store optimal models and scores
    opt_models = dict()
    score_models = pd.DataFrame(columns=['mean','std'])
    
    # no. k-fold splits
    splits=5
    # no. k-fold iterations
    repeats=5

岭回归

复制代码
    model = 'Ridge'
    
    opt_models[model] = Ridge()
    alph_range = np.arange(0.25,6,0.25)
    param_grid = {'alpha': alph_range}
    
    opt_models[model],cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
    
    plt.figure()
    plt.errorbar(alph_range, abs(grid_results['mean_test_score']),
             abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
    plt.xlabel('alpha')
    plt.ylabel('score')
在这里插入图片描述

Lasso回归

复制代码
    model = 'Lasso'
    
    opt_models[model] = Lasso()
    alph_range = np.arange(1e-4,1e-3,4e-5)
    param_grid = {'alpha': alph_range}
    
    opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
    
    plt.figure()
    plt.errorbar(alph_range, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
    plt.xlabel('alpha')
    plt.ylabel('score')
在这里插入图片描述

ElasticNet 回归

复制代码
    model ='ElasticNet'
    opt_models[model] = ElasticNet()
    
    param_grid = {'alpha': np.arange(1e-4,1e-3,1e-4),
              'l1_ratio': np.arange(0.1,1.0,0.1),
              'max_iter':[100000]}
    
    opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
在这里插入图片描述

SVR回归

复制代码
    model='LinearSVR'
    opt_models[model] = LinearSVR()
    
    crange = np.arange(0.1,1.0,0.1)
    param_grid = {'C':crange,
             'max_iter':[1000]}
    
    opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)
    
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
    
    plt.figure()
    plt.errorbar(crange, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
    plt.xlabel('C')
    plt.ylabel('score')
在这里插入图片描述

K近邻

复制代码
    model = 'KNeighbors'
    opt_models[model] = KNeighborsRegressor()
    
    param_grid = {'n_neighbors':np.arange(3,11,1)}
    
    opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
    
    plt.figure()
    plt.errorbar(np.arange(3,11,1), abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*1))
    plt.xlabel('n_neighbors')
    plt.ylabel('score')
在这里插入图片描述

GBDT 模型

复制代码
    model = 'GradientBoosting'
    opt_models[model] = GradientBoostingRegressor()
    
    param_grid = {'n_estimators':[150,250,350],
              'max_depth':[1,2,3],
              'min_samples_split':[5,6,7]}
    
    opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
在这里插入图片描述

XGB模型

复制代码
    model = 'XGB'
    opt_models[model] = XGBRegressor()
    
    param_grid = {'n_estimators':[100,200,300,400,500],
              'max_depth':[1,2,3],
             }
    
    opt_models[model], cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
在这里插入图片描述

随机森林模型

复制代码
    model = 'RandomForest'
    opt_models[model] = RandomForestRegressor()
    
    param_grid = {'n_estimators':[100,150,200],
              'max_features':[8,12,16,20,24],
              'min_samples_split':[2,4,6]}
    
    opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=5, repeats=1)
    
    cv_score.name = model
    score_models = score_models.append(cv_score)
在这里插入图片描述

模型预测–多模型Bagging

复制代码
    def model_predict(test_data,test_y=[],stack=False):
    #poly_trans=PolynomialFeatures(degree=2)
    #test_data1=poly_trans.fit_transform(test_data)
    #test_data=MinMaxScaler().fit_transform(test_data)
    i=0
    y_predict_total=np.zeros((test_data.shape[0],))
    for model in opt_models.keys():
        if model!="LinearSVR" and model!="KNeighbors":
            y_predict=opt_models[model].predict(test_data)
            y_predict_total+=y_predict
            i+=1
        if len(test_y)>0:
            print("{}_mse:".format(model),mean_squared_error(y_predict,test_y))
    y_predict_mean=np.round(y_predict_total/i,3)
    if len(test_y)>0:
        print("mean_mse:",mean_squared_error(y_predict_mean,test_y))
    else:
        y_predict_mean=pd.Series(y_predict_mean)
        return y_predict_mean

Bagging预测

复制代码
    model_predict(X_valid,y_valid)
在这里插入图片描述

模型融合Stacking

模型融合,即先产生一组个体模型,再用某种策略将它们结合起来,以加强模型效果。
分析表明,随着集成中个体模型数量T增加,集成模型的错误率将呈指数级下降,最终趋于0。通过融合可以达到取长补短 的效果,综合个体模型的优势能降低预测误差、优化整体模型的性能。而且个体模型的准确率越高,多样性越大,模型融合的提升效果就越好!

模型融合stacking简单示例

复制代码
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    import itertools
    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.ensemble import RandomForestClassifier
    
    ##主要使用pip install mlxtend安装mlxtend
    from mlxtend.classifier import EnsembleVoteClassifier
    from mlxtend.data import iris_data
    from mlxtend.plotting import plot_decision_regions
    %matplotlib inline
    
    # Initializing Classifiers
    clf1 = LogisticRegression(random_state=0)
    clf2 = RandomForestClassifier(random_state=0)
    clf3 = SVC(random_state=0, probability=True)
    eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')
    
    # Loading some example data
    X, y = iris_data()
    X = X[:,[0, 2]]
    
    # Plotting Decision Regions
    gs = gridspec.GridSpec(2, 2)
    fig = plt.figure(figsize=(10, 8))
    
    for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
                         ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'],
                         itertools.product([0, 1], repeat=2)):
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
    plt.title(lab)
    plt.show()
在这里插入图片描述

工业蒸汽多模型融合stacking

复制代码
    from sklearn.model_selection import train_test_split
    import pandas as pd
    import numpy as np
    from scipy import sparse
    import xgboost
    import lightgbm
    
    from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor,GradientBoostingRegressor,ExtraTreesRegressor
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    
    def stacking_reg(clf,train_x,train_y,test_x,clf_name,kf,label_split=None):
    train=np.zeros((train_x.shape[0],1))
    test=np.zeros((test_x.shape[0],1))
    test_pre=np.empty((folds,test_x.shape[0],1))
    cv_scores=[]
    for i,(train_index,test_index) in enumerate(kf.split(train_x,label_split)):       
        tr_x=train_x[train_index]
        tr_y=train_y[train_index]
        te_x=train_x[test_index]
        te_y = train_y[test_index]
        if clf_name in ["rf","ada","gb","et","lr","lsvc","knn"]:
            clf.fit(tr_x,tr_y)
            pre=clf.predict(te_x).reshape(-1,1)
            train[test_index]=pre
            test_pre[i,:]=clf.predict(test_x).reshape(-1,1)
            cv_scores.append(mean_squared_error(te_y, pre))
        elif clf_name in ["xgb"]:
            train_matrix = clf.DMatrix(tr_x, label=tr_y, missing=-1)
            test_matrix = clf.DMatrix(te_x, label=te_y, missing=-1)
            z = clf.DMatrix(test_x, label=te_y, missing=-1)
            params = {'booster': 'gbtree',
                      'eval_metric': 'rmse',
                      'gamma': 1,
                      'min_child_weight': 1.5,
                      'max_depth': 5,
                      'lambda': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'eta': 0.03,
                      'tree_method': 'exact',
                      'seed': 2017,
                      'nthread': 12
                      }
            num_round = 10000
            early_stopping_rounds = 100
            watchlist = [(train_matrix, 'train'),
                         (test_matrix, 'eval')
                         ]
            if test_matrix:
                model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist,
                                  early_stopping_rounds=early_stopping_rounds
                                  )
                pre= model.predict(test_matrix,ntree_limit=model.best_ntree_limit).reshape(-1,1)
                train[test_index]=pre
                test_pre[i, :]= model.predict(z, ntree_limit=model.best_ntree_limit).reshape(-1,1)
                cv_scores.append(mean_squared_error(te_y, pre))
    
        elif clf_name in ["lgb"]:
            train_matrix = clf.Dataset(tr_x, label=tr_y)
            test_matrix = clf.Dataset(te_x, label=te_y)
            #z = clf.Dataset(test_x, label=te_y)
            #z=test_x
            params = {
                      'boosting_type': 'gbdt',
                      'objective': 'regression_l2',
                      'metric': 'mse',
                      'min_child_weight': 1.5,
                      'num_leaves': 2**5,
                      'lambda_l2': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'learning_rate': 0.03,
                      'tree_method': 'exact',
                      'seed': 2017,
                      'nthread': 12,
                      'silent': True,
                      }
            num_round = 10000
            early_stopping_rounds = 100
            if test_matrix:
                model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix,
                                  early_stopping_rounds=early_stopping_rounds
                                  )
                pre= model.predict(te_x,num_iteration=model.best_iteration).reshape(-1,1)
                train[test_index]=pre
                test_pre[i, :]= model.predict(test_x, num_iteration=model.best_iteration).reshape(-1,1)
                cv_scores.append(mean_squared_error(te_y, pre))
        else:
            raise IOError("Please add new clf.")
        print("%s now score is:"%clf_name,cv_scores)
    test[:]=test_pre.mean(axis=0)
    print("%s_score_list:"%clf_name,cv_scores)
    print("%s_score_mean:"%clf_name,np.mean(cv_scores))
    return train.reshape(-1,1),test.reshape(-1,1)

模型融合stacking基学习器

复制代码
    def rf_reg(x_train, y_train, x_valid, kf, label_split=None):
    randomforest = RandomForestRegressor(n_estimators=600, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1)
    rf_train, rf_test = stacking_reg(randomforest, x_train, y_train, x_valid, "rf", kf, label_split=label_split)
    return rf_train, rf_test,"rf_reg"
    
    def ada_reg(x_train, y_train, x_valid, kf, label_split=None):
    adaboost = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01)
    ada_train, ada_test = stacking_reg(adaboost, x_train, y_train, x_valid, "ada", kf, label_split=label_split)
    return ada_train, ada_test,"ada_reg"
    
    def gb_reg(x_train, y_train, x_valid, kf, label_split=None):
    gbdt = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1)
    gbdt_train, gbdt_test = stacking_reg(gbdt, x_train, y_train, x_valid, "gb", kf, label_split=label_split)
    return gbdt_train, gbdt_test,"gb_reg"
    
    def et_reg(x_train, y_train, x_valid, kf, label_split=None):
    extratree = ExtraTreesRegressor(n_estimators=600, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1)
    et_train, et_test = stacking_reg(extratree, x_train, y_train, x_valid, "et", kf, label_split=label_split)
    return et_train, et_test,"et_reg"
    
    def lr_reg(x_train, y_train, x_valid, kf, label_split=None):
    lr_reg=LinearRegression(n_jobs=-1)
    lr_train, lr_test = stacking_reg(lr_reg, x_train, y_train, x_valid, "lr", kf, label_split=label_split)
    return lr_train, lr_test, "lr_reg"
    
    def xgb_reg(x_train, y_train, x_valid, kf, label_split=None):
    xgb_train, xgb_test = stacking_reg(xgboost, x_train, y_train, x_valid, "xgb", kf, label_split=label_split)
    return xgb_train, xgb_test,"xgb_reg"
    
    def lgb_reg(x_train, y_train, x_valid, kf, label_split=None):
    lgb_train, lgb_test = stacking_reg(lightgbm, x_train, y_train, x_valid, "lgb", kf, label_split=label_split)
    return lgb_train, lgb_test,"lgb_reg"

模型融合stacking预测

复制代码
    def stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True):
    for k, clf_list in enumerate(clf_list):
        clf_list = [clf_list]
        column_list = []
        train_data_list=[]
        test_data_list=[]
        for clf in clf_list:
            train_data,test_data,clf_name=clf(x_train, y_train, x_valid, kf, label_split=label_split)
            train_data_list.append(train_data)
            test_data_list.append(test_data)
            column_list.append("clf_%s" % (clf_name))
    train = np.concatenate(train_data_list, axis=1)
    test = np.concatenate(test_data_list, axis=1)
    
    if if_concat_origin:
        train = np.concatenate([x_train, train], axis=1)
        test = np.concatenate([x_valid, test], axis=1)
    print(x_train.shape)
    print(train.shape)
    print(clf_name)
    print(clf_name in ["lgb"])
    if clf_fin in ["rf","ada","gb","et","lr","lsvc","knn"]:
        if clf_fin in ["rf"]:
            clf = RandomForestRegressor(n_estimators=600, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1)
        elif clf_fin in ["ada"]:
            clf = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01)
        elif clf_fin in ["gb"]:
            clf = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1)
        elif clf_fin in ["et"]:
            clf = ExtraTreesRegressor(n_estimators=600, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1)
        elif clf_fin in ["lr"]:
            clf = LinearRegression(n_jobs=-1)
        clf.fit(train, y_train)
        pre = clf.predict(test).reshape(-1,1)
        return pred
    elif clf_fin in ["xgb"]:
        clf = xgboost
        train_matrix = clf.DMatrix(train, label=y_train, missing=-1)
        test_matrix = clf.DMatrix(train, label=y_train, missing=-1)
        params = {'booster': 'gbtree',
                  'eval_metric': 'rmse',
                  'gamma': 1,
                  'min_child_weight': 1.5,
                  'max_depth': 5,
                  'lambda': 10,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
                  'colsample_bylevel': 0.7,
                  'eta': 0.03,
                  'tree_method': 'exact',
                  'seed': 2017,
                  'nthread': 12
                  }
        num_round = 10000
        early_stopping_rounds = 100
        watchlist = [(train_matrix, 'train'),
                     (test_matrix, 'eval')
                     ]
        model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist,
                          early_stopping_rounds=early_stopping_rounds
                          )
        pre = model.predict(test,ntree_limit=model.best_ntree_limit).reshape(-1,1)
        return pre
    elif clf_fin in ["lgb"]:
        print(clf_name)
        clf = lightgbm
        train_matrix = clf.Dataset(train, label=y_train)
        test_matrix = clf.Dataset(train, label=y_train)
        params = {
                  'boosting_type': 'gbdt',
                  'objective': 'regression_l2',
                  'metric': 'mse',
                  'min_child_weight': 1.5,
                  'num_leaves': 2**5,
                  'lambda_l2': 10,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
                  'colsample_bylevel': 0.7,
                  'learning_rate': 0.03,
                  'tree_method': 'exact',
                  'seed': 2017,
                  'nthread': 12,
                  'silent': True,
                  }
        num_round = 10000
        early_stopping_rounds = 100
        model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix,
                          early_stopping_rounds=early_stopping_rounds
                          )
        print('pred')
        pre = model.predict(test,num_iteration=model.best_iteration).reshape(-1,1)
        print(pre)
        return pre

加载数据

复制代码
    # #load_dataset
    with open("./zhengqi_train.txt")  as fr:
    data_train=pd.read_table(fr,sep="\t")
    with open("./zhengqi_test.txt") as fr_test:
    data_test=pd.read_table(fr_test,sep="\t")

K折交叉验证

复制代码
    from sklearn.model_selection import StratifiedKFold, KFold
    
    folds = 5
    seed = 1
    kf = KFold(n_splits=5, shuffle=True, random_state=0)

训练集和测试集数据

复制代码
    x_train = data_train[data_test.columns].values
    x_valid = data_test[data_test.columns].values
    y_train = data_train['target'].values

使用lr_reg和lgb_reg进行融合预测

复制代码
    clf_list = [lr_reg, lgb_reg]
    #clf_list = [lr_reg, rf_reg]
    
    ##很容易过拟合
    pred = stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True)

这部分内容均源自于《阿里云天池大赛赛题解析(机器学习篇)》这本优秀的教材,在全书中均可找到相关知识点的详细阐述与实践指导。如果您对书中涉及的技术细节感兴趣,请随时查阅原书获取全面解析。

全部评论 (0)

还没有任何评论哟~