Advertisement

2020年美国新冠肺炎疫情数据分析

阅读量:

US_2019COVID

介绍

2020年美国新冠肺炎疫情数据分析–截止2020年9月9日


  • 数据处理
  • 使用Spark对数据进行分析
  • 数据可视化

一、数据处理

1. 数据集分析

data
数据包含以下字段,具体含义:
date 日期; county 区县; state 州; cases 截止该日期确诊人数; deaths 截止该日期死亡人数
将csv文件转为txt文件,方便spark读取生成RDD和DataFrame。
转换代码见 csv_txt.py

2. 上传文件到HDFS文件系统

复制代码
    hdfs dfs -mkdir /tmp
    hdfs dfs -put us-counties.txt /tmp
    
    
    
      
      
      
    

二、使用Spark对数据进行分析

这里使用spark SQL对数据进行分析,因数据集是txt文件,需要从RDD转换得到DataFrame。
从RDD转换得到DataFrame有两种方法,因不知道数据结构,使用第二种编程方式定义RDD模式。

复制代码
    #生成表头
    fields=[StructField("date",DateType(),False),
        StructField("county",StringType(),False),
        StructField("state",StringType(),False),
        StructField("cases",IntegerType(),False),
        StructField("deaths",IntegerType(),False)]
    schema=StructType(fields)
    
    #生成表中记录
    rdd0=spark.sparkContext.textFile("/tmp/us-counties.txt")
    rdd1=rdd0.map(lambda x:x.split("\t")).map(lambda p:Row(toDate(p[0]),p[1],p[2],int(p[3]),int(p[4])))
    #拼接
    schemaUsCovid=spark.createDataFrame(rdd1,schema)
    #注册临时表
    schemaUsCovid.createOrReplaceTempView("usInfo")
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    

其中主要统计了一下8个指标,分别是:

  1. 计算每日累计确诊病例数和死亡数
  2. 计算每日较昨日新增确诊病例数和死亡数
  3. 统计截止9月9日 美国各州累计确诊人数和死亡人数 病死率=死亡率/确诊率
  4. 统计截止9月9日 美国确诊最多的10个州
  5. 统计截止9月9日 美国国死亡最多的10个州
  6. 统计截止9月9日 美国确诊最少的10个州
  7. 统计截止9月9日 美国死亡最少的10个州
  8. 统计截止9月9日全美和各州病死率

将结果存储在本地文件系统中。

复制代码
    hdfs dfs -get /tmp/us/result1.json ./result/result1
    
    
      
    

剩下result文件类似。

完整代码见 dataAnalyst.py

三、数据可视化

使用python第三方库pyecharts作为可视化工具
具体代码见 show.py
具体截图如下:
1.计算每日累计确诊病例数和死亡数

2.计算每日较昨日新增确诊病例数

死亡数

3.统计截止9月9日 美国各州累计确诊人数和死亡人数

4.统计截止9月9日 美国确诊最多的10个州

5.统计截止9月9日 美国国死亡最多的10个州

6.统计截止9月9日 美国确诊最少的10个州

7.统计截止9月9日 美国死亡最少的10个州

8.统计截止9月9日全美和各州病死率

代码地址:https://gitee.com/yxuan-cs/us_2019-covid

参考:http://dblab.xmu.edu.cn/blog/2636-2/

全部评论 (0)

还没有任何评论哟~