An Introduction to Kernel Methods for Machine Learning:
作者:禅与计算机程序设计艺术
1.简介
This article aims to provide a concise overview of kernel methods in machine learning, highlighting their core concepts and essential terminology alongside their operational mechanisms. It will also elucidate the integration of kernel methods with support vector machines for effective classification and regression applications. Lastly, we shall present practical examples utilizing Python libraries such as scikit-learn to demonstrate how kernel methods can address intricate challenges in data analysis and artificial intelligence.
本文旨在简要概述机器学习中的核方法(Kernel Method)。我们将从多个角度对核方法进行深入分析和探讨,并阐述其关键概念与术语的定义及其工作原理。随后我们将重点阐述支持向量机(Support Vector Machine, SVM)这一重要算法如何通过巧妙地结合核技巧实现复杂的分类与回归任务。为了更好地理解这一过程我们将详细解释其内在机制并配合具体示例帮助读者巩固相关知识。此外我们还将通过实际案例展示这些技术如何被广泛应用于数据分析与人工智能领域的复杂问题求解中
2.基本概念与术语
2.1 什么是核函数?
核函数是一种用于衡量数据集中输入或输出之间相似程度的数学函数。其输出结果对应于输入向量在经过核函数处理后的内积。这一结果量化了它们在无限维特征空间中的相似性而非直接基于原始数据集的特征。换言之,在使用如逻辑回归或线性判别分析等线性模型时,它允许我们利用变量间的非线性关系同时保持预测的准确性。
核函数是一种任意定义的数学工具,在机器学习中被广泛应用于特征提取与表示学习过程中。其主要功能是衡量输入数据集中任意两点之间的相似程度,并通过特定映射关系将低维空间的数据映射至高维特征空间中进行处理。这种技术使得我们能够在高维空间中进行非线性的模式识别与分类任务,并且仍然能够利用简单的线性模型实现高效的分类效果和预测能力
2.2 为什么需要核方法?
The primary reason for the significance of kernel methods in machine learning lies in their ability to model complex, non-linear relationships between dataset features without explicitly computing them. This is achieved by defining a kernel function that calculates the similarity between input pairs, thereby implicitly capturing intricate patterns. For this reason, we can utilize standard linear techniques like ordinary least squares or ridge regression, even when the relationship isn't evident during training.
为了理解核方法在机器学习中的核心地位, 我们首先要明确的是, 核函数与径向基函数(RBF)之间存在本质区别. 在这种模型中, 径向基函数通过计算两点之间的距离来确定其作用范围, 然而, 在这种模型中, 并非仅限于有限的空间范围. 相反地, 核方法则通过将所有样本点映射到一个高维空间中去, 这样一来, 在这个高维空间里就可以有效地衡量任意两个样本点之间的相似性程度.
其主要优势之一在于能够自主识别数据集中的复杂关联模式(higher-order dependencies),这些模式单纯依靠线性模型难以捕捉。与此同时,在无需人工设计特征求取非线性关系的过程中,核方法成功规避了维度爆炸的问题,并显著提高了模型的泛化性能。
2.3 支持向量机(SVM)与核函数
The Support Vector Machine (SVM), originated于the 1960's, represents a key supervised learning technique designed to identify a hyperplane capable of distinguishing between two distinct classes within higher-dimensional spaces. This is accomplished by maximizing the margin between said hyperplane and all training data points. Notably, computing pairwise sample distances becomes increasingly resource-intensive as dataset sizes expand; consequently, kernel functions were developed to streamline these calculations and enhance computational efficiency.
支持向量机(SVM)最初提出是在上世纪60年代,并旨在识别两类数据之间的分隔线。所谓“分隔线”,指的是仅限于两个特征时的直线或平面。该方法通过最大化两类之间的间隔(Margin)来确定分隔线;然而,在样本数量极大时计算每两点间的距离会非常耗时;因此为了降低计算复杂度人们引入了核函数的概念。
2.4 概念上的区别
According to whether we aim for classification or regression tasks and whether we presume that our data conforms to a normal distribution, different versions of kernel methods exist. We can distinguish between linear kernels and nonlinear kernels. Linear kernels assume that a linear transformation exists between input variables and their corresponding coefficients, while nonlinear kernels can represent more intricate relationships among the variables. For instance, when considering polynomial kernels, the transformed variable x' = [x^T, x²] enables capturing high-degree polynomial relationships. Conversely, selecting a radial basis function kernel results in a transformed variable corresponding to the Euclidean distance between each point and its nearest center.
在实际应用过程中存在不同版本的Kernel方法。基于任务类型以及数据分布特征,我们按照任务需求和数据特性将其分为两类:即在线性内积Kernel下假设输入变量与其系数间呈严格的数学比例关系;而非多项式映射型内积 Kernel 则能够描述更为复杂的非linearity特征。例如,在选择多项式 Kernel 时其基向量可取为 [x^T, x²] 形式的二维空间向量;而若采用径向基函数 Kernel,则其基向量构建于各测试样本至训练集中心点的距离计算上。
3.核心算法原理与操作步骤
3.1 线性核(Linear Kernel)
The simplest form of a kernel method is referred to as a linear kernel, which employs the dot product of input vectors as a measure of similarity between them. In practice, this involves computing a weighted sum of input vectors multiplied by their corresponding weights and then applying a sign function to determine the predicted output value. This approach captures only linear relationships among variables but remains efficient since it does not require an explicit model for defining decision boundaries, making it more efficient than other forms.
最基本的核方法被称为线性核(Linear Kernel),它通过计算两个输入向量之间的点积来衡量它们的相似程度。具体来说,在实践中这意味着我们将每个输入向量的各个分量与其对应的权重相乘后再相加,并通过符号函数将计算结果转换为预测值。这种做法仅考虑了输入变量间的线性相关关系,在无需显式定义决策边界的情况下展现出较高的效率。
3.2 多项式核(Polynomial Kernel)
Another typical choice for kernel functions is the polynomial-type kernel, which results from computing the outer product of the input vectors and then raising each element to a fixed power p. This transformation effectively maps the input vectors into a higher-dimensional feature space, enabling the capture of nonlinear relationships between variables. A standard practice is to set p equal to 2, corresponding to quadratic (second-degree) polynomials.
另一个常见的核函数是多项式核(Polynomial Kernel),它通过计算输入向量之间的外积来处理数据特征,并将每个元素提升至指定幂次方。这种做法使输入空间被非线性地嵌入到一个更高维度的空间中去,在这一新空间中能够更好地捕捉变量间的复杂关系模式。一般来说,在实际应用中我们选择幂次参数p=2来构建二次多项式的映射关系。
3.3 径向基函数核(RBF Kernel)
The radial basis function (RBF) kernel is another commonly employed type of kernel function, typically dependent on a bandwidth parameter gamma > 0. Unlike other kernel functions discussed here, RBF kernels do not rely on the specific functional form of the target function. Instead, they are based on the assumption that similarities between samples can be approximated as radial symmetric functions centered at each sample. Intuitively, those closer together tend to share numerous similarities, while those farther apart have fewer in common. The power of RBF kernels lies in their ability to generate predictions for new data points based on nearby training examples. As a result, they are especially valuable in scenarios requiring nuanced decision boundaries or handling highly irregular data distributions.
径向基函数核是一种广为采用的核函数类型,在机器学习中具有重要的应用价值。与之前探讨过的其他核函数不同,在计算过程中并不受限于特定的目标函数形式。相反地,在样本间相似性的度量上,默认采用基于各自样本所形成的径向对称分布模型。从直观上看,在相近样本之间共享的特征会更多一些;而当两个样本彼此远离时,则由于缺乏足够的共同特征支持而导致这种关联性减弱。这种性质使其在处理非凸决策边界和高度不规则的数据分布时表现出色。
3.4 基于核函数的SVM
By incorporating kernel methods into traditional support vector machines (SVMs), we can substitute the kernel matrix K(x_i, x_j), which is typically computed by conventional SVMs, with the corresponding kernel values k(x_i, x_j). Specifically, for a labeled dataset comprising N training examples, each characterized by a feature vector xi ∈ R^d and a label yi ∈ {-1, +1}, we can construct a support vector classifier through solving the following optimization problem:
在结合核方法与传统支持向量机(SVM)的过程中,在线性可分情况下我们可以通过替代传统的SVMs核函数矩阵K(x_i,x_j),引入一个新的基于映射后的特征空间中的高斯核函数矩阵K(x_i,x_j)来进行分类任务的学习。基于一个包含N个标记训练样本的数据集,在这个数据集中每个样本由一个d维特征向量xi和对应的标签yi∈{-1,+1}组成。为了求解最优分类器参数我们可以通过以下最优化问题进行计算:
最小化关于α的目标函数包含两部分:第一项为\frac{1}{2}||w||^2和第二项为\frac{\epsilon}{N_k}乘以Σξᵢ。受限于以下约束条件:
对于每一个i(从i=1到i=Nk),有 $y_i(\sum_{j=1}^{Nk}\alphaⱼ yⱼ xⱼ^\top k(xᵢ, xⱼ) - 1) ≥ 且对所有i都有αᵢ≥0。
In this context, w represents the weight vector of a support vector machine (SVM), while α denotes a dual variable indicating the proportion of cost allocated to misclassification in each training example. The expression \( y_i \left( \sum_{j=1}^{N_k} \alpha_j y_j x_j^\top k(x_i, x_j) - 1 \right) \) quantifies the degree to which the i-th training instance violates its constraint. Given that this term must remain non-negative for all violating examples, it follows that: When $\ y_i\left(\sum_{j=1}^{N_k}\alpha_j y_j x_j^{\top}k(x_i,x_j)-1\right)\geqslant -1+\xi_i$, where the sum $\ \sum_{j=1}^{N_k}\alpha_j y_j x_j^{\top}k(x_i,x_j)<1$, it indicates that the classifier meets the condition when the j-th training example is incorrectly classified; Otherwise, when $\ \sum_{j=1}^{N_k}\alpha_j y_j x_j^{\top}k(x_i,x_ j)-1)\leqslant -1-\xi_ i$, it implies that both the i-th and j-th training examples are correctly classified. Therefore, in solving the aforementioned optimization problem, achieving suitable values for α becomes essential. One feasible approach involves setting αᵢ equal to δᵢ for all correctly classified training instances while ensuring that each δᵢ satisfies 0 < δᵢ < C; here, C represents a regularization parameter that balances the trade-off between soft and hard margins. Another viable method is employing the SMO algorithm, which iteratively adjusts α by maintaining its fixed values until convergence is reached. ## 4.示例 ### 4.1 使用Python实现SVM Let us consider an illustrative example of developing a binary SVM classifier using the scikit-learn library in Python. Assume we are working with a dataset that consists of three points, each associated with labels of either -1 or +1: ``` import numpy as np from sklearn import svm # Our dataset contains four points and their labels (-1 and +1) X = np.array([[-2,-1], [-1, -1], [-1, 1], [1, 1]]) y = np.array([-1, -1, 1, 1]) # Create a SVM Classifier clf = svm.SVC(kernel='linear') # Using Linear Kernel # Train the Model using the Training sets clf.fit(X, y) # Predict Output for a new observation new_observation = np.array([[1, 0]]) prediction = clf.predict(new_observation)[0] print("Prediction:", prediction) 代码解读 ``` In this code example, a SVM classifier object is created utilizing scikit-learn's `svm` module with a linear kernel setting. The object undergoes training via its `.fit()` method when supplied with training data X and y. To predict on new data, we utilize this trained model by invoking its `.predict()` method, assigning results to `prediction`. Executing this process yields an output of `-1`, signifying that this instance is likely part of class `-1`. ### 4.2 使用核函数分类器 We are now employing kernel methods to classify a more complex dataset. Assuming we have a dataset comprising handwritten digit images, each labeled with classes from 0 to 9. The pixel grid spans values from black (0) to white (255). To enhance our analysis, we utilize the radial basis function (RBF) kernel for learning nonlinear transformations of pixel values into higher-dimensional feature spaces. ``` import matplotlib.pyplot as plt from scipy.io import loadmat from sklearn.metrics import accuracy_score # Load the MNIST dataset data = loadmat('mnist_subset.mat') # Extract the data and labels from the dictionary train_images = data['train_images'] test_images = data['test_images'] train_labels = data['train_labels'].flatten() test_labels = data['test_labels'].flatten() # Normalize the pixel values train_images /= 255.0 test_images /= 255.0 # Define the Radial Basis Function (RBF) kernel gamma = 0.1 # Hyperparameter for the RBF kernel K = lambda x, y : np.exp(-gamma*np.linalg.norm(x-y)**2) # Fit a SVM classifier using RBF kernel classifier = svm.SVC(kernel=K) classifier.fit(train_images, train_labels) # Make predictions on test data predictions = classifier.predict(test_images) # Compute accuracy score accuracy = accuracy_score(test_labels, predictions) print("Accuracy:", accuracy) 代码解读 ``` According to the provided code, the initial step involves loading a subset of the MNIST dataset that exclusively includes images classified as 0. Subsequently, these pixel values undergo normalization to ensure they fall within a range of 0 to 1. The radial basis function (RBF) kernel is then defined using these normalized values. An SVM classifier is trained using this kernel through the `SVC` estimator provided by scikit-learn. Following prediction of class labels for test data, accuracy scores are computed and evaluated using scikit-learn's `accuracy_score()` function. Ultimately, the evaluation will focus on assessing how well this model generalizes to new, unseen data. ### 4.3 更高级的核技巧 > Additionally employing advanced techniques such as the Nystroem approximation or multi-task learning frameworks, we could enhance our current kernel method further. These approaches aim to lower the computational complexity of kernel-based methods by exchanging higher computational efficiency for enhanced performance. For instance, the Nystroem approximation substitutes the full solution of a large kernel matrix with a low-rank approximation derived from a randomly selected subset of its columns and rows. The multi-task learning framework allows us to simultaneously learn multiple related tasks through a single kernel function. All these strategies can result in substantial gains in terms of performance and scalability for kernel-based algorithms.
