卷积神经网络卷积层作用,卷积与卷积神经网络

1、卷积神经网络算法是什么?
一维构筑、二维构筑、全卷积构筑。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。
卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。
卷积神经网络的连接性:
卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。
卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。
卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。
在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。
谷歌人工智能写作项目:小发猫

2、神经网络的泛化能力差吗?
泛化能力,英文全称generalization ability,指机器学习算法对新鲜样本的适应能力,一种预测新的input类别的能力参考:一个技术宅的学习笔记。
通过学习找到隐含在数据背后的规律,并对具有同一规律的学习集以外的数据,这种经过训练的网络可以给出合适的输出,该能力就被称为泛化能力。
对于神经网络而言,一般越复杂说明该神经网络承受的复杂度越高,描述规律的复杂度容量就越大,当然越好,当然也不是绝对的,但是这能说明一个容器容量的问题,这时该神经网络的泛化能力也越强。
我们需要知道结构复杂性和样本复杂性、样本质量、初始权值、学习时间等因素,都会影响神经网络的泛化能力。为了保证神经网络具有较强的泛化能力,人们已做了很多研究,得到了诸多泛化方法,常用的包括剪枝算法、构造算法和进化算法等。
人工神经网络的泛化能力主要是由于透过无监督预学习可以从训练集导出高效的特征集。复杂的问题一旦转换成用这些特征表达的形式后就自然变简单了。观念上这个有点像是在做适用于训练集的一种智能化的坐标转换。
举例来说,如果训练集是许多人脸的图片,那么预训练做得好的话就能导出如鼻子,眼睛,嘴巴,各种基本脸型等特征。如果做分类时是用这些特征去做而不是基于像素的话,结果自然会好得多。虽然大型的神经网络具有极多的参数,可是由于做分类时其实是基于少数的特征,因此也比较不会产生过拟合的情形。
同时,针对神经网络易于陷入局部极值、结构难以确定和泛化能力较差的缺点,引入了能很好解决小样本、非线性和高维数问题的支持向量回归机来进行油气田开发指标的预测。
3、BP神经网络当中 所提到的泛化能力是指什么?
就是外推的能力。
很多时候训练的网络对于训练的数据能很好的拟合,但是对于不在训练集内的数据拟合就很差强人意了。这种情况就叫泛化能力----差。也就是说可能你的网络存在过拟合的现象。
4、神经网络学习样本越多,泛化能力越强?
是的。
构复杂性和样本复杂性:神经网络的容量以及规模称之为神经网络的结构复杂性,样本复杂性是训练某一固定结构神经网络所需的样本数目。
样本质量是训练样本分布反映总体分布的程度,或者说由整个训练样本集提供的信息量。样本质量可以强烈地影响神经网络的泛化能力,改进训练样本质量,也是改善神经网络泛化能力的一种重要方法。
扩展资料:
注意事项:
由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
参考资料来源:
参考资料来源:
5、bp神经网络提高泛化能力?有几种方法?
常规的几种增强泛化能力的方法,罗列如下:1、较多的输入样本可以提高泛化能力;
但不是太多,过多的样本导致过度拟合,泛化能力不佳;样本包括至少一次的转折点数据。
2、隐含层神经元数量的选择,不影响性能的前提下,尽量选择小一点的神经元数量。隐含层节点太多,造成泛化能力下降,造火箭也只要几十个到几百个神经元,拟合几百几千个数据何必要那么多神经元?
3、误差小,则泛化能力好;误差太小,则会过度拟合,泛化能力反而不佳。
4、学习率的选择,特别是权值学习率,对网络性能有很大影响,太小则收敛速度很慢,且容易陷入局部极小化;太大则,收敛速度快,但易出现摆动,误差难以缩小;一般权值学习率比要求误差稍微稍大一点点;另外可以使用变动的学习率,在误差大的时候增大学习率,等误差小了再减小学习率,这样可以收敛更快,学习效果更好,不易陷入局部极小化。
5、训练时可以采用随时终止法,即是误差达到要求即终止训练,以免过度拟合;可以调整局部权值,使局部未收敛的加快收敛。
