flume简单串联配置案例
发布时间
阅读量:
阅读量
(1)简单串联

这种架构将多个Flume依次串联起来,并从源端的初始节点到末端节点进行数据传输。该架构并不建议过度配置Flumes的数量。避免过度配置Flumes的数量会带来多方面的负面影响。过高的Flumes数量可能导致数据传输速率下降。此外,在运行过程中若单一Flumes出现故障(如Crash或Stale),会导致整个系统的数据传输中断。
(不需要启动hadoop集群)
案例:
这里我以hadoop102与hadoop103两个节点组成串联举例

1.分发flume到hadoop102和hadoop103节点,并各自新建配置文件
在hadoop102新建配置文件netcat-flume-avro.conf
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = hadoop102
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop103
a1.sinks.k1.port = 4141
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
AI写代码
在hadoop103新建配置文件netcat-flume-avro.conf
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = avro
a2.sources.r2.bind = hadoop103
a2.sources.r2.port = 4141
# Describe the sink
a2.sinks.k2.type = logger
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
AI写代码
配置好文件后先在hadoop103启动flume:
[atguigu@hadoop103 flume]$ bin/flume-ng agent -n a2 -c conf/ -f job/netcat-flume-avro.conf -Dflume.root.logger=INFO,console
AI写代码
然后在hadoop102启动flume:
[atguigu@hadoop102 flume]$ bin/flume-ng agent -n a1 -c conf/ -f job/netcat-flume-avro.conf
AI写代码
新开一个hadoop102窗口登录nc:
[atguigu@hadoop102 ~]$ nc hadoop102 44444
AI写代码
然后在nc发送消息,hadoop103就会收到。
开一个hadoop102窗口登录nc:
[atguigu@hadoop102 ~]$ nc hadoop102 44444
AI写代码
然后在nc发送消息,hadoop103就会收到。
全部评论 (0)
还没有任何评论哟~
