Advertisement

毕设成品 深度学习社交距离检测系统(源码+论文)

阅读量:

文章目录

  • 0 前言

  • 1 项目效果

  • 2 设计原理

  • 3 相关技术

    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后

0 前言

近年来,在毕业设计与毕业答辩这两个环节中要求越来越高。与此同时,在这一背景下提出的新需求也逐渐增多。然而由于传统毕设题目往往缺乏创新性与独特性,在满足这些新需求的过程中却显得力不从心。特别是在过去两年里每年都有不少学弟学妹向学长反映他们所做的项目系统无法达到指导老师的要求

为了让同学们顺利完成学业并以最少的努力达到目标, 学长将带来一系列具有代表性的优秀毕业设计案例. 今天将为大家展示.

🚩 毕业设计 深度学习社交距离检测系统(源码+论文)

🥇学长这里给一个题目综合评分(每项满分5分)

难度系数:3分
工作量:3分
创新点:4分

🧿 项目分享:见文末!

1 项目效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

视频效果:

该视频采用iframe形式嵌入,并在允许全屏模式下播放

毕业设计 深度学习社交距离检测系统

2 设计原理

说明

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述

相关代码

复制代码
    import argparse
    from utils.datasets import *
    from utils.utils import *
     
    def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
     
    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA
     
    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16
     
    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()
     
    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)
     
    # Get names and colors
    names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
     
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
     
        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
     
        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                                   fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()
     
        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
     
        # List to store bounding coordinates of people
        people_coords = []
     
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s
     
            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
     
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string
     
                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                            file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format
     
                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        if label is not None:
                            if (label.split())[0] == 'person':
                                people_coords.append(xyxy)
                                # plot_one_box(xyxy, im0, line_thickness=3)
                                plot_dots_on_people(xyxy, im0)
     
            # Plot lines connecting people
            distancing(people_coords, im0, dist_thres_lim=(200,250))
     
            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
     
            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration
     
            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
     
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)
     
    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
     
    print('Done. (%.3fs)' % (time.time() - t0))
     
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-18/V2wvbmraudCWilAXUqB7pKySGkYt.png)

3 相关技术

3.1 YOLOV4

YOLOv4采用基于卷积神经网络的CSPDarknet-53架构用于目标检测任务中的关键组件设计与实现研究

在这里插入图片描述

YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO 数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4 的先验框微调,首先将行人数据集F 依据相似性分为i个对象,即

在这里插入图片描述

在该系统中,每个实体均包含 m 维属性数据。聚类的目标是将 i 个样本根据相似度划分为 j 个类别群,其中每个样本仅被分配至与其最近的类别中心所属的那个类别。为了实现这一目标,需要建立 j 个初始聚类中心点

C c c c   1 2 , ,..., j

,计算每一个对象到每一个聚类中心的欧式距离,见公式

在这里插入图片描述

之后,在对每个对象逐一进行评估后,
各对象将被归并至与其最近的簇心所属的簇中,

在这里插入图片描述

个类簇

S s s s  1 2 , ,..., l

在聚类算法中,建立了类簇的代表点;即为各维度上的平均值。

在这里插入图片描述

相关代码

复制代码
    def check_anchors(dataset, model, thr=4.0, imgsz=640):
    # Check anchor fit to data, recompute if necessary
    print('\nAnalyzing anchors... ', end='')
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # wh
    
    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        return (best > 1. / thr).float().mean()  #  best possible recall
    
    bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
    print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
    if bpr < 0.99:  # threshold to recompute
        print('. Attempting to generate improved anchors, please wait...' % bpr)
        na = m.anchor_grid.numel() // 2  # number of anchors
        new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
        new_bpr = metric(new_anchors.reshape(-1, 2))
        if new_bpr > bpr:  # replace anchors
            new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inference
            m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
            print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
        else:
            print('Original anchors better than new anchors. Proceeding with original anchors.')
    print('')  # newline
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-18/970uq1XhkCxTMQEJLIcZsglaF8Ab.png)

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4系统在执行行人目标检测后自动生成边界框(Bbox),该边界框包含了描述最小化行人边界矩形坐标的详细信息。本研究采用DeepSort算法[18]对行人的质心进行追踪以实现运动向量分析中的安全社交距离计算。具体而言,在追踪过程中我们首先将人物形态简化为质心位置随后通过建立相应的数学模型来进行距离计算

在这里插入图片描述

通过识别出行人的关键特征点后,基于 DeepSort 算法完成多目标的精确定位与跟踪任务……

在这里插入图片描述

相关代码

复制代码
    class TrackState:
    	'''
    	单个轨迹的三种状态
    	'''
    Tentative = 1 #不确定态
    Confirmed = 2 #确定态
    Deleted = 3 #删除态
    
    class Track:
    def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,
                 feature=None):
        '''
        mean:位置、速度状态分布均值向量,维度(8×1)
        convariance:位置、速度状态分布方差矩阵,维度(8×8)
        track_id:轨迹ID
        class_id:轨迹所属类别
        hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数
        age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数
        time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数
        state:轨迹状态
        features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征
        conf:轨迹所属目标的置信度得分
        _n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数
        _max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数
        '''   
        self.mean = mean
        self.covariance = covariance
        self.track_id = track_id
        self.class_id = int(class_id)
        self.hits = 1
        self.age = 1
        self.time_since_update = 0
    
        self.state = TrackState.Tentative
        self.features = []
        if feature is not None:
            self.features.append(feature) #若不为None,初始化外观语义特征
    
        self.conf = conf
        self._n_init = n_init
        self._max_age = max_age
    
    def increment_age(self):
    	'''
    	预测下一帧轨迹时调用
    	'''
        self.age += 1 #轨迹连续存在帧数+1
        self.time_since_update += 1 #轨迹连续匹配失败次数+1
    
    def predict(self, kf):
    	'''
    	预测下一帧轨迹信息
    	'''
        self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差
        self.increment_age() #调用函数,age+1,time_since_update+1
    
    def update(self, kf, detection, class_id, conf):
    	'''
    	更新匹配成功的轨迹信息
    	'''
        self.conf = conf #更新置信度得分
        self.mean, self.covariance = kf.update(
            self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差
        self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征
        self.class_id = class_id.int() #更新轨迹所属类别
    
        self.hits += 1 #轨迹匹配成功次数+1
        self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0
        if self.state == TrackState.Tentative and self.hits >= self._n_init:
            self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态
    
    def mark_missed(self):
    	'''
    	将轨迹状态转为删除态
    	'''
        if self.state == TrackState.Tentative:
            self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态
        elif self.time_since_update > self._max_age:
            self.state = TrackState.Deleted #当连续匹配失败次数超标
    
    	'''
    	该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源
    	'''
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-18/9NmcDKhvGZ6gTeEkWyQ105SRtfja.png)

篇幅有限,更多详细设计见设计论文

4 最后

项目包含内容

在这里插入图片描述

一万四千字 完整详细设计论文

在这里插入图片描述

🧿 项目分享:见文末!

全部评论 (0)

还没有任何评论哟~