R语言——矩阵运算
R语言的矩阵运算
创建矩阵向量;矩阵加减,乘积;矩阵的逆;行列式的值;特征值与特征向量;QR分解;奇异值分解;广义逆;backsolve与fowardsolve函数;取矩阵的上下三角元素;向量化算子等。
1、创建向量
2、创建矩阵
在R中可以用函数matrix()来创建一个矩阵。
3、矩阵转置
A为m×n矩阵,求A’的转置矩阵在R中可用函数t(),例如:
4、矩阵相加减
5、数与矩阵相乘
A为m×n矩阵,c>0,在R中求cA可用符号:“*”,例如:
6、矩阵相乘
A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%*%”,例如:
若A为n×m矩阵,要得到A’B,可用函数crossprod(),该函数计算结果与t(A)%*%B相同,但是效率更高。例如:
矩阵Hadamard积:若A={aij}m×n, B={bij}m×n, 则矩阵的Hadamard积定义为:
A⊙B={aij bij }m×n,R中Hadamard积可以直接运用运算符“*”例如:
7、矩阵对角元素相关运算
例如要取一个方阵的对角元素,
8、矩阵求逆
矩阵求逆可用函数solve(),应用solve(a, b)运算结果是解线性方程组ax = b,若b缺省,则系统默认为单位矩阵,因此可用其进行矩阵求逆,例如:
9、矩阵的特征值和特征向量
矩阵A的谱分解为A=UΛU’,其中Λ是由A的特征值组成的对角矩阵,U的列为A的特征值对应的特征向量,在R中可以用函数eigen()函数得到U和Λ,
10、矩阵的Choleskey分解
对于正定矩阵A,可对其进行Choleskey分解,即:A=P’P,其中P为上三角矩阵,在R中可以用函数chol()进行Choleskey分解,例如:
11、矩阵的奇异值分解
A为m×n矩阵,rank(A)= r, 可以分解为:A=UDV’,其中U’U=V’V=I。在R中可以用函数scd()进行奇异值分解,例如:
12、矩阵QR值分解
A为m×n矩阵可以进行QR分解,A=QR,其中:Q’Q=I,在R中可以用函数qr()进行QR分解,例如:
rank项返回矩阵的秩,qr项包含了矩阵Q和R的信息,要得到矩阵Q和R,可以用函数qr.Q()和qr.R()作用qr()的返回结果,例如:
13、矩阵的广义逆
n×m矩阵A+称为m×n矩阵A的Moore-Penrose逆,如果它满足下列条件:
① A A+A=A;②A+A A+= A+;③(A A+)H=A A+;④(A+A)H= A+A
在R的MASS包中的函数ginv()可计算矩阵A的Moore-Penrose逆,例如:
14 矩阵Kronecker积
n×m矩阵A与h×k矩阵B的kronecker积为一个nh×mk维矩阵,
在R中kronecker积可以用函数kronecker()来计算,例如:
15 矩阵的维数
在R中很容易得到一个矩阵的维数,函数dim()将返回一个矩阵的维数,nrow()返回行数,ncol()返回列数,例如:
16 矩阵的行和、列和、行平均与列平均
在R中很容易求得一个矩阵的各行的和、平均数与列的和、平均数,例如:
上述关于矩阵行和列的操作,还可以使用apply()函数实现。
args(apply)
function (X, MARGIN, FUN, …)
其中:x为矩阵,MARGIN用来指定是对行运算还是对列运算,MARGIN=1表示对行运算,MARGIN=2表示对列运算,FUN用来指定运算函数, …用来给定FUN中需要的其它的参数,例如:
apply(A,1,sum)
[1] 22 26 30
apply(A,1,mean)
[1] 5.5 6.5 7.5
apply(A,2,sum)
[1] 6 15 24 33
apply(A,2,mean)
[1] 2 5 8 11
apply()函数功能强大,我们可以对矩阵的行或者列进行其它运算,例如:
计算每一列的方差
A=matrix(rnorm(100),20,5)
apply(A,2,var)
[1] 0.4641787 1.4331070 0.3186012 1.3042711 0.5238485
apply(A,2,function(x,a)xa,a=2)
[,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24
注意:apply(A,2,function(x,a)xa,a=2)与A*2效果相同,此处旨在说明如何应用alpply函数。
17 矩阵X’X的逆
在统计计算中,我们常常需要计算这样矩阵的逆,如OLS估计中求系数矩阵。R中的包“strucchange”提供了有效的计算方法。
args(solveCrossprod)
function (X, method = c(“qr”, “chol”, “solve”))
其中:method指定求逆方法,选用“qr”效率最高,选用“chol”精度最高,选用“slove”与slove(crossprod(x,x))效果相同,例如:
A=matrix(rnorm(16),4,4)
solveCrossprod(A,method=”qr”)
[,1] [,2] [,3] [,4]
[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730
[2,] -0.1543924 0.4779277 0.1859490 -0.2097302
[3,] -0.2900796 0.1859490 0.6931232 -0.3162961
[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627
solveCrossprod(A,method=”chol”)
[,1] [,2] [,3] [,4]
[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730
[2,] -0.1543924 0.4779277 0.1859490 -0.2097302
[3,] -0.2900796 0.1859490 0.6931232 -0.3162961
[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627
solveCrossprod(A,method=”solve”)
[,1] [,2] [,3] [,4]
[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730
[2,] -0.1543924 0.4779277 0.1859490 -0.2097302
[3,] -0.2900796 0.1859490 0.6931232 -0.3162961
[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627
solve(crossprod(A,A))
[,1] [,2] [,3] [,4]
[1,] 0.6132102 -0.1543924 -0.2900796 0.2054730
[2,] -0.1543924 0.4779277 0.1859490 -0.2097302
[3,] -0.2900796 0.1859490 0.6931232 -0.3162961
[4,] 0.2054730 -0.2097302 -0.3162961 0.3447627
18 取矩阵的上、下三角部分
在R中,我们可以很方便的取到一个矩阵的上、下三角部分的元素,函数lower.tri()和函数upper.tri()提供了有效的方法。
args(lower.tri)
function (x, diag = FALSE)
函数将返回一个逻辑值矩阵,其中下三角部分为真,上三角部分为假,选项diag为真时包含对角元素,为假时不包含对角元素。upper.tri()的效果与之孑然相反。例如:
A
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
lower.tri(A)
[,1] [,2] [,3] [,4]
[1,] FALSE FALSE FALSE FALSE
[2,] TRUE FALSE FALSE FALSE
[3,] TRUE TRUE FALSE FALSE
[4,] TRUE TRUE TRUE FALSE
lower.tri(A,diag=T)
[,1] [,2] [,3] [,4]
[1,] TRUE FALSE FALSE FALSE
[2,] TRUE TRUE FALSE FALSE
[3,] TRUE TRUE TRUE FALSE
[4,] TRUE TRUE TRUE TRUE
upper.tri(A)
[,1] [,2] [,3] [,4]
[1,] FALSE TRUE TRUE TRUE
[2,] FALSE FALSE TRUE TRUE
[3,] FALSE FALSE FALSE TRUE
[4,] FALSE FALSE FALSE FALSE
upper.tri(A,diag=T)
[,1] [,2] [,3] [,4]
[1,] TRUE TRUE TRUE TRUE
[2,] FALSE TRUE TRUE TRUE
[3,] FALSE FALSE TRUE TRUE
[4,] FALSE FALSE FALSE TRUE
A[lower.tri(A)]=0
A
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 0 6 10 14
[3,] 0 0 11 15
[4,] 0 0 0 16
A[upper.tri(A)]=0
A
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 2 6 0 0
[3,] 3 7 11 0
[4,] 4 8 12 16
19 backsolve&fowardsolve函数
20 row()与col()函数
21 行列式的值
22 向量化算子
23 时间序列的滞后值
