Advertisement

Spark SQL进行金融风险控制数据分析(Python)

阅读量:
  1. 导入必要的库
复制代码
    from pyspark import SparkContext, SparkConf
    from pyspark.sql import SparkSession
  1. 创建SparkSession
复制代码
    conf = SparkConf().setAppName("Financial Risk Control Data Analysis")
    sc = SparkContext(conf=conf)
    spark = SparkSession(sc)
  1. 读取数据
复制代码
    # 读取客户信息数据
    customer_info = spark.read.format("csv").option("header", "true").load("customer_info.csv")
    # 读取交易记录数据
    transaction_record = spark.read.format("csv").option("header", "true").load("transaction_record.csv")
  1. 数据清洗和预处理
复制代码
    # 将客户信息数据进行清洗和预处理
    customer_info = customer_info.dropDuplicates() # 去重
    customer_info = customer_info.dropna() # 去除缺失值
    customer_info.createOrReplaceTempView("customer_info")
    # 将交易记录数据进行清洗和预处理
    transaction_record = transaction_record.dropDuplicates() # 去重
    transaction_record = transaction_record.dropna() # 去除缺失值
    transaction_record.createOrReplaceTempView("transaction_record")
    transaction_record = spark.sql("""
    SELECT customer_id, 
           transaction_type, 
           CAST(amount AS DOUBLE) AS amount
    FROM transaction_record
    """)
  1. 数据分析
复制代码
    # 使用Spark SQL进行数据分析
    customer_info.createOrReplaceTempView("customer_info")
    transaction_record.createOrReplaceTempView("transaction_record")
    result = spark.sql("""
    SELECT ci.customer_id, 
           SUM(CASE WHEN tr.transaction_type = 'transfer_in' THEN tr.amount ELSE 0 END) AS transfer_in_amount, 
           SUM(CASE WHEN tr.transaction_type = 'transfer_out' THEN tr.amount ELSE 0 END) AS transfer_out_amount, 
           SUM(CASE WHEN tr.transaction_type = 'consume' THEN tr.amount ELSE 0 END) AS consume_amount
    FROM customer_info ci
    JOIN transaction_record tr ON ci.customer_id = tr.customer_id
    GROUP BY ci.customer_id
    HAVING SUM(CASE WHEN tr.transaction_type = 'transfer_in' THEN tr.amount ELSE 0 END) < SUM(CASE WHEN tr.transaction_type = 'transfer_out' THEN tr.amount ELSE 0 END)
    """)
    # 显示结果
    result.show()

全部评论 (0)

还没有任何评论哟~