Advertisement

WizardCoder:写代码能力测评 Use Golang Write LSM tree code (WizardCoder-15B)

阅读量:

WizardCoder-15B

https://github.com/nlpxucan/WizardLM

An Instruction-following Code LLM Using Evol-Instruct. Now, our model generates answer with greedy decoding and only supports English. Please only use code-related instructions.

WizardCoder Demo

Input 0: func MergeBinaryTree

在这里插入图片描述

Output 1:

复制代码
    type TreeNode struct {
    Val   int
    Left  *TreeNode
    Right *TreeNode
    }
    
    func MergeBinaryTree(root1 *TreeNode, root2 *TreeNode) *TreeNode {
    if root1 == nil {
        return root2
    }
    if root2 == nil {
        return root1
    }
    root := &TreeNode{Val: 0}
    if root1.Val < root2.Val {
        root.Val = root1.Val
        root.Left = MergeBinaryTree(root1.Left, root2)
    } else {
        root.Val = root2.Val
        root.Left = MergeBinaryTree(root1, root2.Left)
    }
    root.Right = MergeBinaryTree(root1.Right, root2.Right)
    return root
    }
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

Input 1: use golang write LSM tree code

Output 1

Sure, I can help you with that. Here’s an example implementation of an LSM tree in Go:

复制代码
    package main
    
    import (
    	"bytes"
    	"encoding/binary"
    	"fmt"
    	"io"
    	"os"
    	"sort"
    )
    
    type KeyValue struct {
    	Key   []byte
    	Value []byte
    }
    
    type SSTable struct {
    	file *os.File
    	data []KeyValue
    }
    
    type LSMTree struct {
    	sstableMap map[string]*SSTable
    	tmpFile    *os.File
    }
    
    func NewLSMTree() *LSMTree {
    	return &LSMTree{
    		sstableMap: make(map[string]*SSTable),
    	}
    }
    
    func (l *LSMTree) Open(path string) error {
    	files, err := os.ReadDir(path)
    	if err!= nil {
    		return err
    	}
    
    	for _, file := range files {
    		if!file.IsDir() {
    			f, err := os.Open(path + "/" + file.Name())
    			if err!= nil {
    				return err
    			}
    
    			sstable := &SSTable{
    				file: f,
    			}
    
    			if err := sstable.read(); err!= nil {
    				return err
    			}
    
    			l.sstableMap[file.Name()] = sstable
    		}
    	}
    
    	return nil
    }
    
    func (l *LSMTree) Close() error {
    	for _, sstable := range l.sstableMap {
    		if err := sstable.file.Close(); err!= nil {
    			return err
    		}
    	}
    
    	if l.tmpFile!= nil {
    		if err := l.tmpFile.Close(); err!= nil {
    			return err
    		}
    	}
    
    	return nil
    }
    
    func (l *LSMTree) Get(key []byte) ([]byte, error) {
    	sstable := l.findSSTable(key)
    	if sstable == nil {
    		return nil, fmt.Errorf("key not found")
    	}
    
    	return sstable.Get(key)
    }
    
    func (l *LSMTree) Set(key, value []byte) error {
    	sstable := l.findSSTable(key)
    	if sstable == nil {
    		sstable = l.newSSTable()
    	}
    
    	if err := sstable.Set(key, value); err!= nil {
    		return err
    	}
    
    	if len(sstable.data) >= 10000 {
    		if err := l.flushSSTable(sstable); err!= nil {
    			return err
    		}
    	}
    
    	return nil
    }
    
    func (l *LSMTree) findSSTable(key []byte) *SSTable {
    	for _, sstable := range l.sstableMap {
    		if bytes.Compare(sstable.data[len(sstable.data)-1].Key, key) <= 0 {
    			return sstable
    		}
    	}
    
    	return nil
    }
    
    func (l *LSMTree) newSSTable() *SSTable {
    	if l.tmpFile == nil {
    		tmpFile, err := os.CreateTemp("", "sstable")
    		if err!= nil {
    			panic(err)
    		}
    
    		l.tmpFile = tmpFile
    	}
    
    	sstable := &SSTable{
    		file: l.tmpFile,
    	}
    
    	l.sstableMap[sstable.file.Name()] = sstable
    
    	return sstable
    }
    
    func (l *LSMTree) flushSSTable(sstable *SSTable) error {
    	sort.Slice(sstable.data, func(i, j int) bool {
    		return bytes.Compare(sstable.data[i].Key, sstable.data[j].Key) < 0
    	})
    
    	if err := sstable.write(); err!= nil {
    		return err
    	}
    
    	if err := sstable.file.Sync(); err!= nil {
    		return err
    	}
    
    	if err := sstable.file.Close(); err!= nil {
    		return err
    	}
    
    	l.tmpFile = nil
    
    	return nil
    }
    
    type SSTableWriter struct {
    	file *os.File
    }
    
    func NewSSTableWriter(file *os.File) *SSTableWriter {
    	return &SSTableWriter{
    		file: file,
    	}
    }
    
    func (w *SSTableWriter) Write(key, value []byte) error {
    	if err := binary.Write(w.file, binary.BigEndian, uint64(len(key))); err!= nil {
    		return err
    	}
    
    	if _, err := w.file.Write(key); err!= nil {
    		return err
    	}
    
    	if err := binary.Write(w.file, binary.BigEndian, uint64(len(value))); err!= nil {
    		return err
    	}
    
    	if _, err := w.file.Write(value); err!= nil {
    		return err
    	}
    
    	return nil
    }
    
    type SSTableReader struct {
    	file *os.File
    }
    
    func NewSSTableReader(file *os.File) *SSTableReader {
    	return &SSTableReader{
    		file: file,
    	}
    }
    
    func (r *SSTableReader) Read() ([]KeyValue, error) {
    	var data []KeyValue
    
    	for {
    		var keyLen uint64
    		if err := binary.Read(r.file, binary.BigEndian, &keyLen); err!= nil {
    			if err == io.EOF {
    				break
    			}
    
    			return nil, err
    		}
    
    		key := make([]byte, keyLen)
    		if _, err := io.ReadFull(r.file, key); err!= nil {
    			return nil, err
    		}
    
    		var valueLen uint64
    		if err := binary.Read(r.file, binary.BigEndian, &valueLen); err!= nil {
    			return nil, err
    		}
    
    		value := make([]byte, valueLen)
    		if _, err := io.ReadFull(r.file, value); err!= nil {
    			return nil, err
    		}
    
    		data = append(data, KeyValue{
    			Key:   key,
    			Value: value,
    		})
    	}
    
    	return data, nil
    }
    
    func (s *SSTable) read() error {
    	reader := NewSSTableReader(s.file)
    	s.data, err = reader.Read()
    	if err!= nil {
    		return err
    	}
    
    	return nil
    }
    
    func (s *SSTable) write() error {
    	writer := NewSSTableWriter(s.file)
    	for _, kv := range s.data {
    		if err := writer.Write(kv.Key, kv.Value); err!= nil {
    			return err
    		}
    	}
    
    	return nil
    }
    
    func (s *SSTable) Get(key []byte) ([]byte, error) {
    	i := sort.Search(len(s.data), func(i int) bool {
    		return bytes.Compare(s.data[i].Key, key) >= 0
    	})
    
    	if i == len(s.data) || bytes.Compare(s.data[i].Key, key)!= 0 {
    		return nil, fmt.Errorf("key not found")
    	}
    
    	return s.data[i].Value, nil
    }
    
    func (s *SSTable) Set(key, value []byte) error {
    	i := sort.Search(len(s.data), func(i int) bool {
    		return bytes.Compare(s.data[i].Key, key) >= 0
    	})
    
    	if i == len(s.data) || bytes.Compare(s.data[i].Key, key)!= 0 {
    		s.data = append(s.data, KeyValue{})
    		copy(s.data[i+1:], s.data[i:])
    		s.data[i] = KeyValue{
    			Key:   key,
    			Value: value,
    		}
    	} else {
    		s.data[i].Value = value
    	}
    
    	return nil
    }
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

This implementation uses a temporary file to store new key-value pairs before they are flushed to disk. The SSTable struct represents a sorted string table, and the LSMTree struct manages a collection of SSTables.

WizardCoder: Empowering Code Large Language Models with Evol-Instruct

To develop our WizardCoder model, we begin by adapting the Evol-Instruct method specifically for coding tasks. This involves tailoring the prompt to the domain of code-related instructions. Subsequently, we fine-tune the Code LLM, StarCoder, utilizing the newly created instruction-following training set.

News

Comparing WizardCoder with the Closed-Source Models.

🔥 The following figure shows that our WizardCoder attains the third position in this benchmark , surpassing Claude-Plus (59.8 vs. 53.0) and Bard (59.8 vs. 44.5). Notably, our model exhibits a substantially smaller size compared to these models.
在这里插入图片描述

❗**Note: In this study, we copy the scores for HumanEval and HumanEval+ from theLLM-Humaneval-Benchmarks. Notably, all the mentioned models generate code solutions for each problem utilizing a single attempt , and the resulting pass rate percentage is reported. Our WizardCoder generates answers using greedy decoding and tests with the same

复制代码
(https://github.com/evalplus/evalplus).**

### Comparing WizardCoder with the Open-Source Models.

The following table clearly demonstrates that our **WizardCoder** exhibits a substantial performance advantage over all the open-source models. ❗**If you are confused with the different scores of our model (57.3 and 59.8), please check the Notes.**

|Model|HumanEval Pass@1|MBPP Pass@1|
|---|---|---|
|CodeGen-16B-Multi|18.3|20.9|
|CodeGeeX|22.9|24.4|
|LLaMA-33B|21.7|30.2|
|LLaMA-65B|23.7|37.7|
|PaLM-540B|26.2|36.8|
|PaLM-Coder-540B|36.0|47.0|
|PaLM 2-S|37.6|50.0|
|CodeGen-16B-Mono|29.3|35.3|
|Code-Cushman-001|33.5|45.9|
|StarCoder-15B|33.6|43.6*|
|InstructCodeT5+|35.0|–|
|WizardLM-30B 1.0|37.8|–|
|WizardCoder-15B 1.0|**57.3**|**51.8**|

  

❗**Note: The reproduced result of StarCoder on MBPP.**

❗**Note: The above table conducts a comprehensive comparison of our**WizardCoder** with other models on the HumanEval and MBPP benchmarks. We adhere to the approach outlined in previous studies by generating **20 samples** for each problem to estimate the pass@1 score and evaluate with the same 

(https://github.com/openai/human-eval/tree/master). The scores of GPT4 and GPT3.5 reported by OpenAI are 67.0 and 48.1 (maybe these are the early version GPT4&3.5).**

Call for Feedbacks

We welcome everyone to use your professional and difficult instructions to evaluate WizardCoder, and show us examples of poor performance and your suggestions in the issue discussion area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardCoder. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it.

Unofficial Video Introductions

Thanks to the enthusiastic friends, their video introductions are more lively and interesting.

  1. WizardCoder AI Is The NEW ChatGPT’s Coding TWIN!

Contents

Online Demo

Fine-tuning

Inference

Evaluation

Citation

Disclaimer

Online Demo

We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many real-world and challenging code-related problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks.

Demo Link (We adopt the greedy decoding now.)

Fine-tuning

We fine-tune WizardCoder using the modified code train.py from Llama-X.
We fine-tune StarCoder-15B with the following hyperparameters:

Hyperparameter StarCoder-15B
Batch size 512
Learning rate 2e-5
Epochs 3
Max length 2048
Warmup step 30
LR scheduler cosine

To reproduce our fine-tuning of WizardCoder, please follow the following steps:

  1. According to the instructions of Llama-X, install the environment, download the training code, and deploy. (Note: deepspeed==0.9.2 and transformers==4.29.2)
  2. Replace the train.py with the train_wizardcoder.py in our repo (src/train_wizardcoder.py)
  3. Login Huggingface:
复制代码
    huggingface-cli login
    
    
      
    
    代码解读
  1. Execute the following training command:
复制代码
    deepspeed train_wizardcoder.py \
    --model_name_or_path "bigcode/starcoder" \
    --data_path "/your/path/to/code_instruction_data.json" \
    --output_dir "/your/path/to/ckpt" \
    --num_train_epochs 3 \
    --model_max_length 2048 \
    --per_device_train_batch_size 16 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 50 \
    --save_total_limit 2 \
    --learning_rate 2e-5 \
    --warmup_steps 30 \
    --logging_steps 2 \
    --lr_scheduler_type "cosine" \
    --report_to "tensorboard" \
    --gradient_checkpointing True \
    --deepspeed configs/deepspeed_config.json \
    --fp16 True
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读

Inference

We provide the decoding script for WizardCoder, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file.

You can specify base_model, input_data_path and output_data_path in src\inference_wizardcoder.py to set the decoding model, path of input file and path of output file.

复制代码
    pip install jsonlines
    
    
      
    
    代码解读

The decoding command is:

复制代码
    python src\inference_wizardcoder.py \
    --base_model "/your/path/to/ckpt" \
    --input_data_path "/your/path/to/input/data.jsonl" \
    --output_data_path "/your/path/to/output/result.jsonl"
    
    
      
      
      
      
    
    代码解读

The format of data.jsonl should be:

复制代码
    {"idx": 11, "Instruction": "Write a Python code to count 1 to 10."}
    {"idx": 12, "Instruction": "Write a Java code to sum 1 to 10."}
    
    
      
      
    
    代码解读

The prompt for our WizardCoder in src\inference_wizardcoder.py is:

复制代码
    Below is an instruction that describes a task. Write a response that appropriately completes the request.
    
    ### Instruction:
    {instruction}
    
    ### Response:
    
    
      
      
      
      
      
      
    
    代码解读

Evaluation

HumanEval

  1. According to the instructions of HumanEval, install the environment.
  2. Run the following script to generate the answer.
复制代码
    model="/path/to/your/model"
    temp=0.2
    max_len=2048
    pred_num=200
    num_seqs_per_iter=2
    
    output_path=preds/T${temp}_N${pred_num}
    
    mkdir -p ${output_path}
    echo 'Output path: '$output_path
    echo 'Model to eval: '$model
    
    # 164 problems, 21 per GPU if GPU=8
    index=0
    gpu_num=8
    for ((i = 0; i < $gpu_num; i++)); do
      start_index=$((i * 21))
      end_index=$(((i + 1) * 21))
    
      gpu=$((i))
      echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
      ((index++))
      (
    CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \
      --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
      --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path}
      ) &
      if (($index % $gpu_num == 0)); then wait; fi
    done
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读
  1. Run the post processing code src/process_humaneval.py to collect the code completions from all answer files.
复制代码
    output_path=preds/T${temp}_N${pred_num}
    
    echo 'Output path: '$output_path
    python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt
    
    evaluate_functional_correctness ${output_path}.jsonl
    
    
      
      
      
      
      
      
    
    代码解读

MBPP

  1. Run the following script to generate the answer.
复制代码
    model="/path/to/your/model"
    temp=0.2
    max_len=2048
    pred_num=200
    num_seqs_per_iter=2
    
    output_path=preds/MBPP_T${temp}_N${pred_num}
    mbpp_path=data/mbpp.test.jsonl # we provide this file in data/mbpp.test.zip
    
    mkdir -p ${output_path}
    echo 'Output path: '$output_path
    echo 'Model to eval: '$model
    
    # 500 problems, 63 per GPU if GPU=8
    index=0
    gpu_num=8
    for ((i = 0; i < $gpu_num; i++)); do
      start_index=$((i * 50))
      end_index=$(((i + 1) * 50))
    
      gpu=$((i))
      echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
      ((index++))
      (
    CUDA_VISIBLE_DEVICES=$gpu python mbpp_gen.py --model ${model} \
      --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
      --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path ${mbpp_path}
      ) &
      if (($index % $gpu_num == 0)); then wait; fi
    done
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读
  1. Run the post processing code src/process_mbpp.py to collect the code completions from all answer files.
复制代码
    output_path=preds/MBPP_T${temp}_N${pred_num}
    mbpp_path=data/mbpp.test.jsonl # we provide this file in data/mbpp.test.zip
    
    echo 'Output path: '$output_path
    python process_mbpp.py --path ${output_path} --out_path ${output_path}.jsonl --mbpp_path ${mbpp_path} --add_prompt
    
    
      
      
      
      
      
    
    代码解读
  1. Evaluate the MBPP_T${temp}_N${pred_num}.jsonl with bigcode-evaluation-harness.

Acknowledgement: The evaluation code humaneval_gen.py, mbpp_gen.py and bash scripts are modified from the great works of CodeT5.

Citation

Please cite the repo if you use the data or code in this repo.

复制代码
    @misc{luo2023wizardcoder,
      title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, 
      author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang},
      year={2023},
      eprint={2306.08568},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
    }
    
    
      
      
      
      
      
      
      
      
    
    代码解读

Disclaimer

The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardCoder is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.

全部评论 (0)

还没有任何评论哟~