基于神经网络的文字识别,BP神经网络图像识别

1、怎么进行人民币冠字码识别
人民币纸币上除了汉字、少数民族文字、汉语拼音及第四套人民币主币上增加的盲文外,还有用以控制各种票券印制数量和防伪作用的冠号和号码。冠,取首之意,冠字也称“字头”,即印在票券号码前的符号,用以表示各种票券和印制数量的批号。
中国人民银行发行的五套人民币纸币,前三套均使用两个或三个不同的罗马数字(Ⅰ、Ⅱ、Ⅲ、Ⅳ等)作冠字,第四套人民币改成两个相同或不同的汉语拼音字母作冠字,而“庆祝中华人民共和国成立50周年”流通纪念钞只用一个汉语拼音字母作冠字。
号码也是表示票券印制数量的编号,是每一冠字批号中的具体编号,一般采用阿拉伯数字排列号码,一票一号,在同一冠字批号中的号码一般不会出现重复。从钞票的号码位数可以看出该组冠字所印票券的多寡,即位数越多,印制数量越大,反之印制数量越少。
扩展资料:
冠字号码新排列方式
2010年年初,央行调整了人民币纸币的冠字号码排列方式,如市场所见“A0A0000001”方式。随着现金发行量的增加,人民币纸币冠字号码排列方式仍会不断调整变化(如“A00A000001”和“A000A00001”等排列方式。
市面上较为广泛使用的第五套人民币100元纸币的冠字号码为十位,前两位是大写的拼音字母组合,后八位则为阿拉伯数字,其中冠字号码前四位为红色,后六位为黑色。
央行有关人士证实,如今两个拼音字母相互排列的冠号组合已经全部使用完,因此有一部分人民币百元钞冠号部分变更为拼音字母 数字拼音字母的形式,就如市面上已经出现的“A0A0000001”。而且,今后随着现金发行量的增加,冠字号码的排列方式还将进行调整。
参考资料来源:
谷歌人工智能写作项目:小发猫

2、将'基于BP神经网络的数字字符识别的研究'翻译成中文 10
The research of digital character recognition based on BP neural network
3、BP神经网络 处理字符串
神经网络算法,通过一次次地训练来调节神经节点的连接权重,能够有效地进行模式识别。
比如电脑可以快速分辨出
00000000
和
00000O00
之间内容不同。
但是却很难认为找茬游戏的两张图片是相似图片。
使用神经网络,可以瞬间识别出两张图片的相似程度(需要用其中一张长期训练)。
总而言之,神经网络算法给了程序模式识别的能力。
4、神经网络字符识别算法C实现,网上找了很多,不是不能用就是MFC类型的,求大侠帮助
光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。已有30多年历史,近几年又出现了图像字符识别(image character recognition,ICR)和智能字符识别(intelligent character recognition,ICR),实际上这三种自动识别技术的基本原理大致相同。关于字符识别的方法有很多种,最简单的就是模板匹配,还有根据采集到的字符用BP神经网络或者SVM来训练得到结果的方式。
上传的是C++编写的,稍微改一下就行。事实上,你自己找的基于MFC的也是改一改就行。
5、基于bp神经网络的手写数字识别怎么做
车牌识别技术(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号,目前的技术水平为字母和数字的识别率可达到96%,汉字的识别率可达到95%。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。
参考下车牌智能识别的matlab代码,和你的手写数字识别差不多。
6、bp神经网络
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
如图所示拓扑结构的单隐层前馈网络,一般称为三层前馈网或三层感知器,即:输入层、中间层(也称隐层)和输出层。它的特点是:各层神经元仅与相邻层神经元之间相互全连接,同层内神经元之间无连接,各层神经元之间无反馈连接,构成具有层次结构的前馈型神经网络系统。单计算层前馈神经网络只能求解线性可分问题,能够求解非线性问题的网络必须是具有隐层的多层神经网络。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
神经网络可以用作分类、聚类、预测等。神经网络需要有一定量的历史数据,通过历史数据的训练,网络可以学习到数据中隐含的知识。在你的问题中,首先要找到某些问题的一些特征,以及对应的评价数据,用这些数据来训练神经网络。
虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。
首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。
其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。对于这个问题,可以采用附加动量法来解决。
再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。
最后,网络的学习和记忆具有不稳定性。也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。但是可以将预测、分类或聚类做的比较好的权值保存。
