Advertisement

Python计算机视觉编程(九)

阅读量:

  • knn可视化

    • knn
    • 算法流程
    • 二维点knn可视化
  • dense sift原理

  • 手势识别

knn可视化

knn

邻近分类方法(亦称K近邻分类技术),即k-NearestNeighbor(kNN)分类方法是数据挖掘分类技术中最基础的方法之一。该算法的核心理念在于:若某一实例在特征空间中与之最近的k个实例中大多数属于同一类别,则此实例亦将被归类至该类别,并展示其相应的属性。

算法流程

  1. 准备好数据集,并对其进行预处理步骤

  2. 选择适当的数据结构以存储训练数据集与测试样本

  3. 设定参数值如k值

  4. 维护一个大小为k并按距离降序排列的优先级队列用于存储最近邻训练样本;然后随机选取k个初始样本作为候选 nearest neighbors 计算测试样本至这k个候选样本的距离并将被测样本编号及其对应距离信息存入队列中

  5. 遍历所有训练样本集合

  6. 计算并比较当前样本与测试样本之间的相似度

  7. 将计算得到的距离值与优先级队列中目前的最大相似度值进行对比分析

  8. 当计算出的距离大于或等于现有最大值时,则舍弃该数据样本

  9. 继续处理下一个数据样本

  10. 如果上述条件不满足,则移除当前记录的最大相似度数据样本,并将新的训练数据加入到优先级队列中去

  11. 当所有数据样本均被处理完毕后,在优先级队列中选取前k个相似度较高的数据样本

  12. 根据这些被选中的前k个训练样本确定最终分类结果

  13. 测试集完成评估后统计分类错误率

  14. 通过反复采用不同的k参数值进行模型优化过程

二维点knn可视化

在这里插入图片描述

代码实现
创建二维样本数据

复制代码
    # -*- coding: utf-8 -*-
    from numpy.random import randn
    import pickle
    from pylab import *
    
    n = 200
    
    class_1 = 0.4 * randn(n,2)
    class_2 = 1.5 * randn(n,2) + array([8,3])
    labels = hstack((ones(n),-ones(n)))
    with open('points_normal.pkl', 'w') as f:
    pickle.dump(class_1,f)
    pickle.dump(class_2,f)
    pickle.dump(labels,f)
    
    print "save OK!"
    
    with open('points_normal_test.pkl', 'w') as f:
    pickle.dump(class_1,f)
    pickle.dump(class_2,f)
    pickle.dump(labels,f)
    
    print "save OK!"
    
    class_1 = 0.4 * randn(n,2)
    r = 0.8 * randn(n,1) + 8
    angle = 3*pi * randn(n,1)
    class_2 = hstack((r*cos(angle),r*sin(angle)))
    labels = hstack((ones(n),-ones(n)))
    
    with open('points_ring.pkl', 'w') as f:
    pickle.dump(class_1,f)
    pickle.dump(class_2,f)
    pickle.dump(labels,f)
    
    print "save OK!"
    
    with open('points_ring_test.pkl', 'w') as f:
    pickle.dump(class_1,f)
    pickle.dump(class_2,f)
    pickle.dump(labels,f)
    
    print "save OK!"

可视化

复制代码
    # -*- coding: utf-8 -*-
    import pickle
    from pylab import *
    from PCV.classifiers import knn
    from PCV.tools import imtools
    
    pklist=['points_normal.pkl','points_ring.pkl']
    
    figure()
    
    for i, pklfile in enumerate(pklist):
    with open(pklfile, 'r') as f:
        class_1 = pickle.load(f)
        class_2 = pickle.load(f)
        labels = pickle.load(f)
    
    with open(pklfile[:-4]+'_test.pkl', 'r') as f:
        class_1 = pickle.load(f)
        class_2 = pickle.load(f)
        labels = pickle.load(f)
    
    model = knn.KnnClassifier(labels,vstack((class_1,class_2)))
    
    print model.classify(class_1[0])
    
    def classify(x,y,model=model):
        return array([model.classify([xx,yy]) for (xx,yy) in zip(x,y)])
    
    subplot(1,2,i+1)
    imtools.plot_2D_boundary([-6,6,-6,6],[class_1,class_2],classify,[1,-1])
    titlename=pklfile[:-4]
    title(titlename)
    show()

dense sift原理

一种基于稠密SIFT特征的目标跟踪方法被提出.该方法首先将目标区域划分为大小一致的小矩形块,并统计每个小块的SIFT特征向量.接着,在每个小块的中间区域进行采样以获取密集SIFT特征,从而建模目标的表现特性.随后,通过计算两个图像区域对应小块之间的Bhattacharyya距离来评估它们之间的差异程度,并按权重对各距离求和作为两区域间的相似度指标.鉴于边缘区域易受背景干扰,而内部区域更具一致性,因此中心位置的权函数值较大.最后,提出了一种适应目标尺度变化的跟踪算法.实验结果表明,该方法具有良好的跟踪性能

在这里插入图片描述
在这里插入图片描述

手势的dense sift

在这里插入图片描述
复制代码
    # -*- coding: utf-8 -*-
    from PCV.localdescriptors import sift, dsift
    from pylab import  *
    from PIL import Image
    
    dsift.process_image_dsift('gesture/empire.jpg','empire.dsift',90,40,True)
    l,d = sift.read_features_from_file('empire.dsift')
    im = array(Image.open('gesture/empire.jpg'))
    sift.plot_features(im,l,True)
    title('dense SIFT')
    show()

手势识别

我们采用了dense sift描述子来进行手势图像的表示,并构建了一个基础的手势识别系统。基于训练数据集及其对应的标签信息构建分类器模型。随后,在测试数据集中进行遍历并应用分类器进行识别,在此过程中统计正确的识别数量。参考教材中提供的图片集作为手势识别的测试基准。

在这里插入图片描述

使用自己拍摄的手势图片,从中每类抽取一张测试

在这里插入图片描述
复制代码
    # -*- coding: utf-8 -*-
    from PCV.localdescriptors import dsift
    import os
    from PCV.localdescriptors import sift
    from pylab import *
    from PCV.classifiers import knn
    
    def get_imagelist(path):
    
    return [os.path.join(path,f) for f in os.listdir(path) if f.endswith('.ppm')]
    
    def read_gesture_features_labels(path):
    # create list of all files ending in .dsift
    featlist = [os.path.join(path,f) for f in os.listdir(path) if f.endswith('.dsift')]
    # read the features
    features = []
    for featfile in featlist:
        l,d = sift.read_features_from_file(featfile)
        features.append(d.flatten())
    features = array(features)
    # create labels
    labels = [featfile.split('/')[-1][0] for featfile in featlist]
    return features,array(labels)
    
    def print_confusion(res,labels,classnames):
    n = len(classnames)
    # confusion matrix
    class_ind = dict([(classnames[i],i) for i in range(n)])
    confuse = zeros((n,n))
    for i in range(len(test_labels)):
        confuse[class_ind[res[i]],class_ind[test_labels[i]]] += 1
    print 'Confusion matrix for'
    print classnames
    print confuse
    
    filelist_train = get_imagelist('gesture/train')
    filelist_test = get_imagelist('gesture/test')
    imlist=filelist_train+filelist_test
    
    for filename in imlist:
    featfile = filename[:-3]+'dsift'
    dsift.process_image_dsift(filename,featfile,10,5,resize=(50,50))
    
    features,labels = read_gesture_features_labels('gesture/train/')
    test_features,test_labels = read_gesture_features_labels('gesture/test/')
    classnames = unique(labels)
    
    # test kNN
    k = 1
    knn_classifier = knn.KnnClassifier(labels,features)
    res = array([knn_classifier.classify(test_features[i],k) for i in
    range(len(test_labels))])
    # accuracy
    acc = sum(1.0*(res==test_labels)) / len(test_labels)
    print 'Accuracy:', acc
    
    print_confusion(res,test_labels,classnames)

全部评论 (0)

还没有任何评论哟~