基于transformer的心脑血管心脏病疾病预测
发布时间
阅读量:
阅读量
视频资源解析:利用Transformer模型进行心脑血管疾病的预测分析 完整数据代码库分享_哔哩哔哩_bilibili
数据展示:

完整代码:
# pip install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple/
# pip install optuna -i https://pypi.tuna.tsinghua.edu.cn/simple/
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch import nn
import torch.nn.functional as F
from torch import tensor
import torch.utils.data as Data
import math
from matplotlib import pyplot
from datetime import datetime, timedelta
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn as nn
import math
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
# 设置随机参数:保证实验结果可以重复
SEED = 1234
import random
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED) # 适用于显卡训练
torch.cuda.manual_seed_all(SEED) # 适用于多显卡训练
from torch.backends import cudnn
cudnn.benchmark = False
cudnn.deterministic = True
# 用30天的数据(包括这30天所有的因子和log_ret)预测下一天的log_ret
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
date=pd.read_csv("Heart Disease Dataset(12 attributes)(1).csv")
print(date.columns)
print(date.head())
data = date.fillna(-1)
data_x=data[['Age', 'RestingBP', 'Cholesterol', 'FastingBS', 'MaxHR', 'Oldpeak',
'HeartDisease']].values
data_x=np.array(data_x,dtype=np.float16)
print(data_x)
data_31_x = []
data_31_y = []
for i in range(0, len(data_x) - 5,1):
data_31_x.append(data_x[i:i+1])
data_31_y.append(data_x[i+1][-1])
print(len(data_31_x), len(data_31_y))
class DataSet(Data.Dataset):
def __init__(self, data_inputs, data_targets):
self.inputs = torch.FloatTensor(data_inputs)
self.label = torch.FloatTensor(data_targets)
def __getitem__(self, index):
return self.inputs[index], self.label[index]
def __len__(self):
return len(self.inputs)
Batch_Size = 32 #
DataSet = DataSet(np.array(data_31_x), list(data_31_y))
train_size = int(len(data_31_y) * 0.8)
test_size = len(data_31_y) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(DataSet, [train_size, test_size])
TrainDataLoader = Data.DataLoader(train_dataset, batch_size=Batch_Size, shuffle=True, drop_last=True)
TestDataLoader = Data.DataLoader(test_dataset, batch_size=Batch_Size, shuffle=True, drop_last=True)
print("TestDataLoader 的batch个数", TestDataLoader.__len__())
print("TrainDataLoader 的batch个数", TrainDataLoader.__len__())
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0,1)
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor):
chunk = x.chunk(x.size(-1), dim=2)
out = torch.Tensor([]).to(x.device)
for i in range(len(chunk)):
out = torch.cat((out, chunk[i] + self.pe[:chunk[i].size(0), ...]), dim=2)
return out
def transformer_generate_tgt_mask(length, device):
mask = torch.tril(torch.ones(length, length, device=device)) == 1
mask = (
mask.float()
.masked_fill(mask == 0, float("-inf"))
.masked_fill(mask == 1, float(0.0))
)
return mask
class Transformer(nn.Module):
"""标准的Transformer编码器-解码器结构"""
def __init__(self, n_encoder_inputs, n_decoder_inputs, Sequence_length, d_model=512, dropout=0.1, num_layer=8):
"""
初始化
:param n_encoder_inputs: 输入数据的特征维度
:param n_decoder_inputs: 编码器输入的特征维度,其实等于编码器输出的特征维度
:param d_model: 词嵌入特征维度
:param dropout: dropout
:param num_layer: Transformer块的个数
Sequence_length: transformer 输入数据 序列的长度
"""
super(Transformer, self).__init__()
self.input_pos_embedding = torch.nn.Embedding(500, embedding_dim=d_model)
self.target_pos_embedding = torch.nn.Embedding(500, embedding_dim=d_model)
encoder_layer = torch.nn.TransformerEncoderLayer(d_model=d_model, nhead=num_layer, dropout=dropout,
dim_feedforward=4 * d_model)
decoder_layer = torch.nn.TransformerDecoderLayer(d_model=d_model, nhead=num_layer, dropout=dropout,
dim_feedforward=4 * d_model)
self.encoder = torch.nn.TransformerEncoder(encoder_layer, num_layers=2)
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=4)
self.input_projection = torch.nn.Linear(n_encoder_inputs, d_model)
self.output_projection = torch.nn.Linear(n_decoder_inputs, d_model)
self.linear = torch.nn.Linear(d_model, 1)
self.ziji_add_linear = torch.nn.Linear(Sequence_length, 2)
def encode_in(self, src):
src_start = self.input_projection(src).permute(1, 0, 2)
in_sequence_len, batch_size = src_start.size(0), src_start.size(1)
pos_encoder = (torch.arange(0, in_sequence_len, device=src.device).unsqueeze(0).repeat(batch_size, 1))
pos_encoder = self.input_pos_embedding(pos_encoder).permute(1, 0, 2)
src = src_start + pos_encoder
src = self.encoder(src) + src_start
return src
def decode_out(self, tgt, memory):
tgt_start = self.output_projection(tgt).permute(1, 0, 2)
out_sequence_len, batch_size = tgt_start.size(0), tgt_start.size(1)
pos_decoder = (torch.arange(0, out_sequence_len, device=tgt.device).unsqueeze(0).repeat(batch_size, 1))
pos_decoder = self.target_pos_embedding(pos_decoder).permute(1, 0, 2)
tgt = tgt_start + pos_decoder
tgt_mask = transformer_generate_tgt_mask(out_sequence_len, tgt.device)
out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask) + tgt_start
out = out.permute(1, 0, 2) # [batch_size, seq_len, d_model]
out = self.linear(out)
return out
def forward(self, src, target_in):
# print("src.shape", src.shape)
src = self.encode_in(src)
# print("src.shape",src.shape)#src.shape torch.Size([9, 8, 512])
out = self.decode_out(tgt=target_in, memory=src)
# print("out.shape",out.shape)
# print("out.shape:",out.shape)# torch.Size([batch, 3, 1]) # 原本代码中的输出
# 上边的这个输入可以用于很多任务的输出 可以根据任务进行自由的变换
# 下面是自己修改的
# 使用全连接变成 [batch,1] 构成了基于transformer的回归单值预测
out = out.squeeze(2)
out = self.ziji_add_linear(out)
return out
model = Transformer(n_encoder_inputs=7, n_decoder_inputs=7, Sequence_length=1).to(device) # 3 表示Sequence_length transformer 输入数据 序列的长度
def test_main(model):
val_epoch_loss = []
with torch.no_grad():
for index, (inputs, targets) in enumerate(TestDataLoader):
inputs = torch.tensor(inputs).to(device)
targets = torch.tensor(targets).to(device)
inputs = inputs.float()
targets = targets.float()
tgt_in = torch.rand((Batch_Size,1,7))
outputs = model(inputs, tgt_in)
# print(outputs.float(), targets.float())
outputs = torch.tensor(outputs, dtype=torch.float)
targets = torch.tensor(targets, dtype=torch.long)
loss = criterion(outputs, targets)
val_epoch_loss.append(loss.item())
return np.mean(val_epoch_loss)
epochs = 50 #
optimizer = torch.optim.Adamax(model.parameters(), lr=0.01) #
criterion = torch.nn.CrossEntropyLoss().to(device)
val_loss = []
train_loss = []
best_test_loss = 10000000
for epoch in tqdm(range(epochs)):
train_epoch_loss = []
for index, (inputs, targets) in enumerate(TrainDataLoader):
inputs = torch.tensor(inputs).to(device)
targets = torch.tensor(targets).to(device)
inputs = inputs.float()
targets = targets.float()
# print("inputs",inputs.shape) # [batch,3,16]
# print("targets",targets.shape) # targets torch.Size([batch])
tgt_in = torch.rand((Batch_Size,1,7)) # 输入数据的维度是[batch,序列长度,每个单元的维度]
outputs = model(inputs, tgt_in)
# print("outputs.shape:",outputs.shape) # outputs.shape [batch, 3, 1]
outputs = torch.tensor(outputs, dtype=torch.float)
targets = torch.tensor(targets, dtype=torch.long)
loss = criterion(outputs, targets)
loss.requires_grad_(True)
print("loss:", loss)
loss.backward()
optimizer.step()
train_epoch_loss.append(loss.item())
train_loss.append(np.mean(train_epoch_loss))
val_epoch_loss = test_main(model)
val_loss.append(val_epoch_loss)
print("epoch:", epoch, "train_epoch_loss:", np.mean(train_epoch_loss), "val_epoch_loss:", val_epoch_loss)
# 保存下来最好的模型:
if val_epoch_loss < best_test_loss:
best_test_loss = val_epoch_loss
best_model = model
print("best_test_loss -------------------------------------------------", best_test_loss)
torch.save(best_model.state_dict(), 'best_Transformer_trainModel.pth')
# 画一下loss图
fig = plt.figure(facecolor='white', figsize=(10, 7))
plt.xlabel('X')
plt.ylabel('Y')
plt.xlim(xmax=len(val_loss), xmin=0)
plt.ylim(ymax=max(max(train_loss), max(val_loss)), ymin=0)
# 画两条(0-9)的坐标轴并设置轴标签x,y
x1 = [i for i in range(0, len(train_loss), 1)] # 随机产生300个平均值为2,方差为1.2的浮点数,即第一簇点的x轴坐标
y1 = val_loss # 随机产生300个平均值为2,方差为1.2的浮点数,即第一簇点的y轴坐标
x2 = [i for i in range(0, len(train_loss), 1)]
y2 = train_loss
colors1 = '#00CED4' # 点的颜色
colors2 = '#DC143C'
area = np.pi * 4 ** 1 # 点面积
# 画散点图
plt.scatter(x1, y1, s=area, c=colors1, alpha=0.4, label='val_loss')
plt.scatter(x2, y2, s=area, c=colors2, alpha=0.4, label='train_loss')
plt.legend()
plt.savefig('transformer_loss图.png')
plt.show()
# 加载模型预测------
model = Transformer(n_encoder_inputs=7, n_decoder_inputs=7, Sequence_length=1).to(device)
model.load_state_dict(torch.load('best_Transformer_trainModel.pth'))
model.to(device)
model.eval()
# 在对模型进行评估时,应该配合使用with torch.no_grad() 与 model.eval():
y_pred = []
y_true = []
with torch.no_grad():
with torch.no_grad():
val_epoch_loss = []
for index, (inputs, targets) in enumerate(TestDataLoader):
inputs = torch.tensor(inputs).to(device)
targets = torch.tensor(targets).to(device)
inputs = inputs.float()
targets = targets.float()
tgt_in = torch.rand((Batch_Size,1,7))
outputs = model(inputs, tgt_in)
print("outputs",outputs)
print("targets",targets)
outputs = outputs.cpu().numpy()
for t in np.array(outputs):
t = np.argmax(t)
y_pred.append(t)
for ii in targets:
y_true.append(ii)
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
Acc = accuracy_score(y_true, y_pred)
print("Acc",Acc)
Fa = f1_score(y_true, y_pred, average='macro')
print("Fa", Fa)
# xgboost
完整代码数据:
<>
全部评论 (0)
还没有任何评论哟~
