Advertisement

segment-anything 根据box分割

阅读量:

该文本介绍了使用SAM(Segment Anything Model)进行图像分割的技术。代码展示了如何通过SAM模型对图像进行单个box和批量预测,并通过OpenCV和PyTorch库实现。具体包括:
使用SAM模型对单个区域进行分割,并显示分割后的掩膜和矩形框
批量处理多个区域的分割预测,并对每个分割结果进行显示
使用PyTorch加载SAM模型,设置设备并读取图像
通过SAM模型的预测函数生成多通道掩膜,并结合输入框进行显示

整理了根据box分割box内容,如下图,可以用来分割标注:

目录

一个box,交互分割代码:

多个box批量预测:


一个box,交互分割代码:

复制代码
 import time

    
  
    
 using_colab = False
    
 import numpy as np
    
 import torch
    
 # import matplotlib.pyplot as plt
    
 import cv2
    
  
    
 def show_points(coords, labels, ax, marker_size=375):
    
     pos_points = coords[labels == 1]
    
     neg_points = coords[labels == 0]
    
     ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
    
            linewidth=1.25)
    
     ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
    
            linewidth=1.25)
    
  
    
 if using_colab:
    
     import torch
    
     import torchvision
    
     print("PyTorch version:", torch.__version__)
    
     print("Torchvision version:", torchvision.__version__)
    
     print("CUDA is available:", torch.cuda.is_available())
    
     import sys
    
  
    
 def show_mask(mask, ax, random_color=False):
    
     if random_color:
    
     color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    
     else:
    
     color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    
     h, w = mask.shape[-2:]
    
     mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    
     cv2.imshow("one", mask_image)
    
     cv2.waitKey(0)
    
     ax.imshow(mask_image)
    
  
    
 if __name__ == '__main__':
    
  
    
     import sys
    
     sys.path.append("..")
    
     from segment_anything import sam_model_registry, SamPredictor
    
  
    
     sam_checkpoint = "sam_vit_h_4b8939.pth"
    
     model_type = "vit_h"
    
  
    
     sam_checkpoint = "sam_vit_l_0b3195.pth"
    
     model_type = "vit_l"
    
  
    
     device = "cuda:0"
    
  
    
     image_o = cv2.imread(r'F:\3d\Python-3D-Rasterizer-main\pyrender-main\res\50\00004_img.jpg')
    
  
    
     roi = cv2.selectROI(windowName="roi", img=image_o, showCrosshair=True, fromCenter=False)
    
  
    
     x, y, w, h = roi
    
  
    
     input_box = np.array([x, y, x + w, y + h])
    
     image = cv2.cvtColor(image_o, cv2.COLOR_BGR2RGB)
    
  
    
     sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    
     sam.to(device=device)
    
  
    
     predictor = SamPredictor(sam)
    
  
    
     for i in range(1):
    
     start = time.time()
    
     predictor.set_image(image)
    
     masks, _, _ = predictor.predict(
    
         point_coords=None,
    
         point_labels=None,
    
         box=input_box[None, :],
    
         multimask_output=False,
    
     )
    
     print('time', (time.time() - start))
    
  
    
     # plt.figure(figsize=(10, 10))
    
     # plt.imshow(image)
    
     # show_mask(masks[0], plt.gca())
    
     random_color=False
    
     mask=masks[0]
    
     if random_color:
    
     color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    
     else:
    
     color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    
     h, w = mask.shape[-2:]
    
     mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    
     x0, y0 = input_box[0], input_box[1]
    
     w, h = input_box[2] - input_box[0], input_box[3] - input_box[1]
    
     cv2.rectangle(image_o, (x0, y0), (input_box[2], input_box[3]), (0, 255, 0), 2)
    
     cv2.imshow("img", image_o)
    
     cv2.imshow("one", mask_image)
    
     cv2.waitKey(0)
    
     # show_box(input_box, plt.gca())
    
     # plt.axis('off')
    
     # plt.show()

多个box批量预测:

复制代码
 import time

    
  
    
 using_colab = False
    
 import numpy as np
    
 import torch
    
 # import matplotlib.pyplot as plt
    
 import cv2
    
  
    
 def show_points(coords, labels, ax, marker_size=375):
    
     pos_points = coords[labels == 1]
    
     neg_points = coords[labels == 0]
    
     ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
    
            linewidth=1.25)
    
     ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
    
            linewidth=1.25)
    
  
    
 if using_colab:
    
     import torch
    
     import torchvision
    
     print("PyTorch version:", torch.__version__)
    
     print("Torchvision version:", torchvision.__version__)
    
     print("CUDA is available:", torch.cuda.is_available())
    
     import sys
    
  
    
 def show_mask(mask, ax, random_color=False):
    
     if random_color:
    
     color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    
     else:
    
     color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    
     h, w = mask.shape[-2:]
    
     mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    
     cv2.imshow("one", mask_image)
    
     cv2.waitKey(0)
    
     ax.imshow(mask_image)
    
  
    
 if __name__ == '__main__':
    
  
    
     import sys
    
     sys.path.append("..")
    
     from segment_anything import sam_model_registry, SamPredictor
    
  
    
     sam_checkpoint = "sam_vit_h_4b8939.pth"
    
     model_type = "vit_h"
    
  
    
     sam_checkpoint = "sam_vit_l_0b3195.pth"
    
     model_type = "vit_l"
    
  
    
     device = "cuda:0"
    
  
    
     image_o = cv2.imread(r'F:\3d\img.jpg')
    
  
    
     image = cv2.cvtColor(image_o, cv2.COLOR_BGR2RGB)
    
  
    
     sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
    
     sam.to(device=device)
    
  
    
     predictor = SamPredictor(sam)
    
  
    
     input_boxes = torch.tensor([
    
     [839, 28, 953, 149],
    
     [1377, 2, 1519, 287],
    
     ], device=predictor.device)
    
  
    
     transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, image.shape[:2])
    
     predictor.set_image(image)
    
     masks, _, _ = predictor.predict_torch(
    
     point_coords=None,
    
     point_labels=None,
    
     boxes=transformed_boxes,
    
     multimask_output=False,
    
     )
    
     print(masks.shape)
    
  
    
     for index,mask in  enumerate(masks):
    
     input_box=input_boxes[index]
    
     random_color = False
    
     if random_color:
    
         color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    
     else:
    
         color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    
     h, w = mask.shape[-2:]
    
     mask_image = mask.cpu().numpy().reshape(h, w, 1) * color.reshape(1, 1, -1)
    
     x0, y0 = int(input_box[0]), int(input_box[1])
    
     w, h = input_box[2] - input_box[0], input_box[3] - input_box[1]
    
     cv2.rectangle(image_o, (x0, y0), (int(input_box[2]),int(input_box[3])), (0, 255, 0), 2)
    
     cv2.imshow("img", image_o)
    
     cv2.imshow("one", mask_image)
    
     cv2.waitKey(0)
    
  
    
  
    
     # plt.figure(figsize=(10, 10))
    
     # plt.imshow(image)
    
     # show_mask(masks[0], plt.gca())
    
  
    
     # show_box(input_box, plt.gca())
    
     # plt.axis('off')
    
     # plt.show()

全部评论 (0)

还没有任何评论哟~