毫米波成像 论文阅读笔记 | HawkEye, CVPR 2020
论文阅读笔记:其中包含作者Jianfeng Guan及其合著者Siddharth Madani、Sachin Jog、Sumeet Gupta以及Hassan Hassanieh的研究成果,在2020年CVPR会议上获得了广泛关注。通过毫米波雷达在低能见度环境下实现高分辨率成像的研究成果,在2020年CVPR会议上获得了广泛关注

Abstract
- mmWave high-resolution imaging: in dense fog
- Motivation *
mmWave signals:
The system exhibits good propagation properties under low visibility circumstances.
❌ suffer from very low resolution, specularity, and noise artifacts.
光学传感器则反之
- 本文采用HawkEye技术基于生成对抗网络(Generative Adversarial Networks, GANs)实现对低分辨率毫米波热图形状信息的恢复。
- 该系统基于毫米波信号的结构特征及其本性进行设计。
- 开发了一个数据合成器:构建训练数据集。
- 将我们的系统部署于自研的毫米波雷达平台并展示了性能提升。
1 Introduction
mmWave Radar high-resolution imaging的意义
- Significance lies in severe weather conditions (dense fog, smog, snowstorms, and sandstorms) and low-light scenarios (poornight vision scenarios) necessitating the use of millimeter-wave radar for autonomous driving.
- several challenges lie in however, millimeter-wave radar imaging remains a significant challenge (as shown in figures d and e)
- 1 Lower resolution characteristics pose a problem.
- 2 Highly specular reflections complicate the imaging process.
- 3 Multiple path propagation issues lead to shadow reflections and artifacts across various regions.

- 现有的解决方案:
- 1 提高分辨率:采用人尺寸机械可调节阵列。
- 2 消除多径反射:将被成像对象隔离在近场区域。
- 3 解决镜面效果:旋转阵列以围绕被成像对象。
- 显然,在自动驾驶应用中这一设计方案显得过于笨重且不切实际。
本文工作 HawkEye 概述
Key idea :
frame the challenge of predicting high-frequency shapes from raw mmWave heatmaps as a learning task.
Advantages :
Use of learning provides robustness *
efficiently utilize the priors related to the shapes of cars to generate plausible forecasts
Innovations *
the design of the Neural Network : map 3D input heatmaps to 2D depth maps
Loss function : combination of perceptual, L1, and adversarial loss
Training Data :
A realistic radar data generator capable of reflecting distinct features of radar systems.
A real-world dataset aggregation system is designed to gather accurate and up-to-date datasets for refining machine learning models and establishing performance benchmarks.
System Overview (四个模块,如下图)
Module 1 : handcrafted mmWave imaging module \Rightarrow acquire radar data stream
Module 2: A stereo camera system with a wide baseline, which \Rightarrow results in the acquisition of the ground truth high-resolution 2D depth map.
课程3 : 合成器 ⇒ 基于汽车CAD模型和毫米波射线追踪算法生成合成数据
Module组别 : 生成对抗网络(GAN) ⇒ 生成高分辨率深度图并从原始的3D毫米波热图中重建汽车在真实场景中的雾景

2 Related Work
2.1 Super-Resolution
该技术基于image patch correspondences between low-resolution and high-resolution image patches.
点云超分辨 (closest to this work)
* upsamplng sparse 3D LiDAR data to create dense 2D depth maps
上述工作的特点(优势) :
- 或 同时利用cameras与LiDAR进行操作
- 或 主要依赖于高频视觉特征(如边缘)来分类物体并增强细节
毫米波超分辨率在实现高分辨率方面面临诸多挑战, 其主要原因在于显著降低的空间分辨率。尽管如此, 高频视觉特征如边界和边缘等细节信息在毫米波频段中不易察觉。此外, 常规采样与超分辨率技术难以有效消除由这些现象带来的干扰
2.2 LiDAR in Fog
现有工作的limitations
- must know the depth information about the scene in advance
- involve estimating, from a stationary object, the statistical distribution of photons it reflects
- only capable of detecting with limited depth, resolution, and field-of-view
但毫米波没有这些限制
2.3 Radar Imaging Systems
现有 high resolution radar imaging system 的主要缺点 是其应用范围受限(\Rightarrow 仅在非常近的距离范围内(<50厘米))。系统中的 bulky scanners 造成了较大的体积占用,并通过 The system integrates advanced optical components 实现了高分辨率成像功能。然而,在移动平台上运行时表现出显著的局限性
现有基于深度学习的工作 * 分辨率仍较低
* 短距离工作
3 Millimeter Wave Imaging Background
-
3D热图的生成 * 4个 Fast Fourier Transform (FFT)
-
3D heatmap: x(φ, θ, ρ) \Rightarrow 其中 x(φ, θ, ρ) 表示空间中每个体素反射的能量分布
- An example:

- Challenges of mmWave radar imaging (compared to camera and LiDAR)
1 Low imaging resolution is (significantly lower than vision)
❌ range resolution (10cm, 3.3* worse than LiDAR)
❌ 水平角和垂直角分辨率(分别为5度和50分)比LiDAR低 \Rightarrow 需要安装至少9米长的天线阵列 才能获得与LiDAR相似的亚度数分辨率
2 Specular reflections
✅ Most reflections never trace back to the mmWave receiver
❌ 导致 Sparsity + Multipath artifacts
The radar data exhibits distinct representations and perspectives compared to cameras.
设计的网络须 accommodate the above challenges
4. HawkEye’s Architecture
4.1 Overview
based on conditional GAN
Generator *
input: mmWave heatmap x
🚩 Low spatial resoltion, but high depth resolution
encoder-decoder architecture
skip-connections: retain highfrequency details in depth
Discriminator
Loss * GAN loss
* L_1 + perceptual loss
在设计过程中 考虑到了 peculiarities of the raw mmWave signal 的特性
4.2 Input and Output Representation
-
Input :
- 3D radar heatmap (φ, θ, ρ) \in \mathbb{R}^{64\times 32 \times 96}
-
Output :
- 2D depth map of the target \in \mathbb{R}^{256\times 128}
4.3 Generator Architecture
-
encoder
- latent vector length: 2048
- 3D Conv + Leaky-ReLU + BN
-
decoder
- Deconv + Leaky-ReLU + BN
- tanh + FC

4.4 Skip Connections
-
Motivation * Keep the high-frequency information from the input
-
做法 *
step 1: projects the input 3D heatmap into a 2D image
Recording the location corresponding to the highest value: (选择前八项), each channel consists of eight subchannels.
x_{2 D}(\phi, \theta)=\arg \max _r x_{3 D}(\phi, \theta, r)
step 2: concatenated with the features maps at the 6th layer in the decoder
Such a non-differentiable operation is exclusively performed with the input.
4.5 Discriminator Architecture
- 如下图

4.6 Loss Function
生成器损失由三部分构成:其中包含传统GAN的损失函数\mathcal{L}(G);基于L_1范数的损失项(衡量真实值与预测值之间的差距);以及感知损失项\mathcal{L}_p(G)。值得注意的是,在讨论生成器损失时
\downarrow
\begin{aligned} &\hat{\ell}_{1}(G) 实现为 \ell(y-G(x)) \\ &\hat{\ell}_{p}(G) 实现为 \ell(VGG(y)-VGGG(x)) \\ &\hat{\ell}_{H}(G) 实现为 \ell(G) + \lambda_{1} \ell_{1} + \lambda_{p} \ell_{2} \end{aligned}
5. HawkEye’s Data Synthesizer
-
Input :
- 3D CAD 模型
-
Output :
- (3D mmWave heatmap + 2D depth) pairs
-
特点:该系统旨在创建汽车的三维点反射模型
-
使用射线追踪方法模拟毫米波雷达信号
-
考虑了多路径反射以及基于反射角度的镜面效应
-
生成效果显著优异
5.1 step 1: Scene Generation
- based on two types of datasets :
1 3D CAD models
✅ precise 3D meshes of a wide variety of cars
2 Cityscapes, a street view video recordings dataset
✅ offer references for car placement in the camera frame
✅ 利用Mask R-CNN 检测目标
5.2 step 2: Ray Tracing
model the mmWave reflectors in the scene
- represent the remaining parts as clusters of point reflectors
- construct standard ray tracing [16] on the point reflectors
5.3 step 3: mmWave Heatmap and Ground-truth Generation
- 基于点反射器模型
- 引入背景噪声
- 非平凡的外校准
- 获取(三维毫米波热图与二维深度图)配对
6. Experiments
6.1 Dataset and Implementation
Dataset
Radar data
- Simulate the behavior of a two-dimensional (2D) antenna array using a 60 GHz radio.
- Utilize conventional radar waveform techniques to generate three-dimensional (3D) millimeter-wave (mmWave) heatmaps.
2D depth map
- Calibrated iPhone Camera
- 利用标准的立体图像处理技术 [35] 生成二维深度图
- 随后通过Mask-RCNN去除不属于车辆的 voxels
真实采集数据: 包含327个样本
包含三种不同的场景:室内停车场、露天停车场以及露天车辆通道
分为九个类别和六十分类车辆:包括亚 compacts(2辆)、compacts(12辆)、mid-sized(16辆)、full-sized(7辆)、sports cars(5辆)、SUVs(11辆)、一辆JEEP、两辆Vans和四辆Trucks
合成数据集 * 4000 samples on 120个car models
Controlled Experiments in Fog/Rain
- 101/327 个真实数据 from fog and rain
- 雾和雨的产生:
- 使用高密度水基烟雾设备配合的烟雾生成器
- 通过在汽车周围有限区域使用的水 hoses进行模仿
- 使用高密度水基烟雾设备配合的烟雾生成器
- 雾和雨的产生:
Training
- 模型在训练过程中分为两个阶段
- 第一个阶段:利用大量 synthetic 数据进行学习
- 第二个阶段:利用真实数据进行微调以提升模型性能。
Baselines
- 1 原始毫米波热图
- 基于 L_1 网络(用于分析GAN损失)
- Closest : 在输入特征空间中检索3D雷达热图中的样本点,并采用最小欧氏距离实现检索。
- 该网络并非单纯地存储数据特征
6.2 Qualitative Results


Failure Examples
- 该系统难以处理强虚反射和表象现象在热图中的表现
- 难以处理复杂的多车交通场景
- 当场景包含多个车辆时 效果会下降
- 难以处理复杂的多车交通场景

6.3 Quantitative Results

7 Conclusion
虽然HawkEye仍有改进空间,在二维深度图重构方面取得了显著进展
