Adapter Tuning:详细解读Parameter-Efficient Transfer Learning for NLP
深度学习领域的重要方向——扩散模型系列文章综述
前言: 大语言模型实在是太火了,各种技术日新月异,研究diffusion models的从LLMs中找一些研究灵感已经是基操了。当模型比较小的时候,微调全部参数还是可以的。但是现在的大预训练模型时代,微调所有参数不仅效果堪忧,对资源的消耗也非常恐怖,所以这就是做有效微调的初衷。为了研究清楚如何进行有效的大模型微调,我打算沿着Adapter Tuning——Prefix Tuning——Prompt Tuning——P-Tuning——lora 的路线详细讲解一下,希望可以对做diffusion models的同学有所启发。
目录
方法详解
Adapter结构
实验效果
论文和代码
代码解读
个人感悟
参考
方法详解
Adapter结构
Adapter模块的核心优势在于其参数规模较小且初始化过程具有高度一致性。相比于原始网络的结构,适配器模块所需的参数量显著减少。这表明,在任务扩展过程中,模型整体规模的增长速率较低。

具体实现细节可见图中。Adapter组件被直接集成到transformer架构中。左子图标识了嵌入位置的具体设置方式。整个transformer模型由两部分构成:自注意力机制和前馈网络为基本组成单元;每部分经过两次运算后均配备一个投影转换模块(即全连接层),其作用是将输出特征尺寸还原至与输入相同的规模(即维数归一化过程)。为了优化信息传递效率,在各子网络之间引入跳跃连接机制(skip connection)。在此基础之上,在每个子网络之后并行插入两个独立的adapter组件;这些辅助模块的作用是对子网络输出结果进行进一步优化处理;adapter组件处理完毕后再经归一化转换返回主网络流程;最终将优化后的特征传递给下一层次结构进行建模任务求解。
右图展示了Adapter模块的架构:该模块首先包含一个downProjection层用于将高维特征向量映射至低维空间;随后经过一个非线性层处理;接着采用upProjection机制将低维表示还原回原始高维特征;特别的是,在这一设计中融入了skip connection机制以确保即使在极端情况下也能实现有效的恒等操作。
实验效果
实验结果表明,Adapter tuning 表现出了与 full fine-tuning 相似的性能,并且减少了训练参数的数量。

以下几幅图大体上呈现一致的结论,在实现与微调训练同步进行的前提下,通过改进算法设计使得所需资源减少两个数量级。



论文和代码
代码位置:GitHub - google-research/adapter-bert
代码解读
某些框架中adapter通常通过回调接口的方式实现,并其核心逻辑主要体现在以下几个方面
def get_adapter(function_string):
"""Maps a string to a Python function.
4. Args:
function_string: String name of the adapter function.
7. Returns:
A Python function corresponding to the adatper function.
`function_string` is None or empty, will return None.
If `function_string` is not a string, it will return `function_string`.
12. Raises:
ValueError: The `function_string` does not correspond to a known
adapter.
"""
# We assume that anything that"s not a string is already an adapter
# function, so we just return it.
if not isinstance(function_string, six.string_types):
return function_string
if not function_string:
return None
fn = function_string.lower()
if fn == "feedforward_adapter":
return feedforward_adapter
else:
raise ValueError("Unsupported adapters: %s" % fn)
AI助手
下面是具体的网络结构定义:
def feedforward_adapter(input_tensor, hidden_size=64, init_scale=1e-3):
"""A feedforward adapter layer with a bottleneck.
4. Implements a bottleneck layer with a user-specified nonlinearity and an
identity residual connection. All variables created are added to the
"adapters" collection.
8. Args:
input_tensor: input Tensor of shape [batch size, hidden dimension]
hidden_size: dimension of the bottleneck layer.
init_scale: Scale of the initialization distribution used for weights.
13. Returns:
Tensor of the same shape as x.
"""
with tf.variable_scope("adapters"):
in_size = input_tensor.get_shape().as_list()[1]
w1 = tf.get_variable(
"weights1", [in_size, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=init_scale),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
b1 = tf.get_variable(
"biases1", [1, hidden_size],
initializer=tf.zeros_initializer(),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
net = tf.tensordot(input_tensor, w1, [[1], [0]]) + b1
net = gelu(net)
w2 = tf.get_variable(
"weights2", [hidden_size, in_size],
initializer=tf.truncated_normal_initializer(stddev=init_scale),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
b2 = tf.get_variable(
"biases2", [1, in_size],
initializer=tf.zeros_initializer(),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
net = tf.tensordot(net, w2, [[1], [0]]) + b2
AI助手
完整代码如下:
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The main BERT model and related functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import json
import math
import re
import numpy as np
import six
import tensorflow as tf
class BertConfig(object):
"""Configuration for `BertModel`."""
def __init__(self,
vocab_size,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
initializer_range=0.02):
"""Constructs BertConfig.
48. Args:
vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The stdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertConfig(vocab_size=None)
for (key, value) in six.iteritems(json_object):
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with tf.gfile.GFile(json_file, "r") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class BertModel(object):
"""BERT model ("Bidirectional Encoder Representations from Transformers").
110. Example usage:
112. ```python
# Already been converted into WordPiece token ids
input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
118. config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
121. model = modeling.BertModel(config=config, is_training=True,
input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
124. label_embeddings = tf.get_variable(...)
pooled_output = model.get_pooled_output()
logits = tf.matmul(pooled_output, label_embeddings)
...
"""
def init(self,
config,
is_training,
input_ids,
input_mask=None,
token_type_ids=None,
use_one_hot_embeddings=False,
scope=None,
adapter_fn="feedforward_adapter"):
"""Constructor for BertModel.
-
Args:
config: `BertConfig` instance.
is_training: bool. true for training model, false for eval model. Controls
whether dropout will be applied.
input_ids: int32 Tensor of shape [batch_size, seq_length].
input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
embeddings or tf.embedding_lookup() for the word embeddings.
scope: (optional) variable scope. Defaults to "bert".
adapter_fn: (optional) string identifying trainable adapter that takes
as input a Tensor and returns a Tensor of the same shape.
-
Raises:
ValueError: The config is invalid or one of the input tensor shapes
is invalid.
"""
config = copy.deepcopy(config)
if not is_training:
config.hidden_dropout_prob = 0.0
config.attention_probs_dropout_prob = 0.0
input_shape = get_shape_list(input_ids, expected_rank=2)
batch_size = input_shape[0]
seq_length = input_shape[1]
if input_mask is None:
input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
if token_type_ids is None:
token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
with tf.variable_scope(scope, default_name="bert"):
with tf.variable_scope("embeddings"):
# Perform embedding lookup on the word ids.
(self.embedding_output, self.embedding_table) = embedding_lookup(
input_ids=input_ids,
vocab_size=config.vocab_size,
embedding_size=config.hidden_size,
initializer_range=config.initializer_range,
word_embedding_name="word_embeddings",
use_one_hot_embeddings=use_one_hot_embeddings)
# Add positional embeddings and token type embeddings, then layer
# normalize and perform dropout.
self.embedding_output = embedding_postprocessor(
input_tensor=self.embedding_output,
use_token_type=True,
token_type_ids=token_type_ids,
token_type_vocab_size=config.type_vocab_size,
token_type_embedding_name="token_type_embeddings",
use_position_embeddings=True,
position_embedding_name="position_embeddings",
initializer_range=config.initializer_range,
max_position_embeddings=config.max_position_embeddings,
dropout_prob=config.hidden_dropout_prob)
with tf.variable_scope("encoder"):
# This converts a 2D mask of shape [batch_size, seq_length] to a 3D
# mask of shape [batch_size, seq_length, seq_length] which is used
# for the attention scores.
attention_mask = create_attention_mask_from_input_mask(
input_ids, input_mask)
# Run the stacked transformer.
# `sequence_output` shape = [batch_size, seq_length, hidden_size].
self.all_encoder_layers = transformer_model(
input_tensor=self.embedding_output,
attention_mask=attention_mask,
hidden_size=config.hidden_size,
num_hidden_layers=config.num_hidden_layers,
num_attention_heads=config.num_attention_heads,
intermediate_size=config.intermediate_size,
intermediate_act_fn=get_activation(config.hidden_act),
hidden_dropout_prob=config.hidden_dropout_prob,
attention_probs_dropout_prob=config.attention_probs_dropout_prob,
initializer_range=config.initializer_range,
do_return_all_layers=True,
adapter_fn=get_adapter(adapter_fn))
self.sequence_output = self.all_encoder_layers[-1]
# The "pooler" converts the encoded sequence tensor of shape
# [batch_size, seq_length, hidden_size] to a tensor of shape
# [batch_size, hidden_size]. This is necessary for segment-level
# (or segment-pair-level) classification tasks where we need a fixed
# dimensional representation of the segment.
with tf.variable_scope("pooler"):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token. We assume that this has been pre-trained
first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
self.pooled_output = tf.layers.dense(
first_token_tensor,
config.hidden_size,
activation=tf.tanh,
kernel_initializer=create_initializer(config.initializer_range))
def get_pooled_output(self):
return self.pooled_output
def get_sequence_output(self):
"""Gets final hidden layer of encoder.
-
Returns:
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
to the final hidden of the transformer encoder.
"""
return self.sequence_output
def get_all_encoder_layers(self):
return self.all_encoder_layers
def get_embedding_output(self):
"""Gets output of the embedding lookup (i.e., input to the transformer).
-
Returns:
float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
to the output of the embedding layer, after summing the word
embeddings with the positional embeddings and the token type embeddings,
then performing layer normalization. This is the input to the transformer.
"""
return self.embedding_output
def get_embedding_table(self):
return self.embedding_table
def gelu(x):
"""Gaussian Error Linear Unit.
- This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
x: float Tensor to perform activation.
- Returns:
`x` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
def get_activation(activation_string):
"""Maps a string to a Python function, e.g., "relu" => tf.nn.relu.
- Args:
activation_string: String name of the activation function.
- Returns:
A Python function corresponding to the activation function. If
`activation_string` is None, empty, or "linear", this will return None.
If `activation_string` is not a string, it will return `activation_string`.
- Raises:
ValueError: The `activation_string` does not correspond to a known
activation.
"""
We assume that anything that"s not a string is already an activation
function, so we just return it.
if not isinstance(activation_string, six.string_types):
return activation_string
- if not activation_string:
return None
- act = activation_string.lower()
if act == "linear":
return None
elif act == "relu":
return tf.nn.relu
elif act == "gelu":
return gelu
elif act == "tanh":
return tf.tanh
else:
raise ValueError("Unsupported activation: %s" % act)
-
- def feedforward_adapter(input_tensor, hidden_size=64, init_scale=1e-3):
"""A feedforward adapter layer with a bottleneck.
Implements a bottleneck layer with a user-specified nonlinearity and an
identity residual connection. All variables created are added to the
"adapters" collection.
Args:
input_tensor: input Tensor of shape [batch size, hidden dimension]
hidden_size: dimension of the bottleneck layer.
init_scale: Scale of the initialization distribution used for weights.
Returns:
Tensor of the same shape as x.
"""
with tf.variable_scope("adapters"):
in_size = input_tensor.get_shape().as_list()[1]
w1 = tf.get_variable(
"weights1", [in_size, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=init_scale),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
b1 = tf.get_variable(
"biases1", [1, hidden_size],
initializer=tf.zeros_initializer(),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
net = tf.tensordot(input_tensor, w1, [[1], [0]]) + b1
-
net = gelu(net) -
w2 = tf.get_variable(
"weights2", [hidden_size, in_size],
initializer=tf.truncated_normal_initializer(stddev=init_scale),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
b2 = tf.get_variable(
"biases2", [1, in_size],
initializer=tf.zeros_initializer(),
collections=["adapters", tf.GraphKeys.GLOBAL_VARIABLES])
net = tf.tensordot(net, w2, [[1], [0]]) + b2
-
return net + input_tensor
-
- def get_adapter(function_string):
"""Maps a string to a Python function.
Args:
function_string: String name of the adapter function.
Returns:
A Python function corresponding to the adatper function.
`function_string` is None or empty, will return None.
If `function_string` is not a string, it will return `function_string`.
Raises:
ValueError: The `function_string` does not correspond to a known
adapter.
"""
-
We assume that anything that"s not a string is already an adapter
function, so we just return it.
if not isinstance(function_string, six.string_types):
return function_string
if not function_string:
return None
fn = function_string.lower()
if fn == "feedforward_adapter":
return feedforward_adapter
else:
raise ValueError("Unsupported adapters: %s" % fn)
def get_assignment_map_from_checkpoint(tvars, init_checkpoint):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\ d+$", name)
if m is not None:
name = m.group(1)
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
assignment_map = collections.OrderedDict()
for x in init_vars:
(name, var) = (x[0], x[1])
if name not in name_to_variable:
continue
assignment_map[name] = name
initialized_variable_names[name] = 1
initialized_variable_names[name + ":0"] = 1
return (assignment_map, initialized_variable_names)
def dropout(input_tensor, dropout_prob):
"""Perform dropout.
- Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
- Returns:
A version of `input_tensor` with dropout applied.
"""
if dropout_prob is None or dropout_prob == 0.0:
return input_tensor
output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob)
return output
def layer_norm(input_tensor, name=None):
"""Run layer normalization on the last dimension of the tensor."""
return tf.contrib.layers.layer_norm(
inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name,
variables_collections=["layer_norm", tf.GraphKeys.GLOBAL_VARIABLES])
def layer_norm_and_dropout(input_tensor, dropout_prob, name=None):
"""Runs layer normalization followed by dropout."""
output_tensor = layer_norm(input_tensor, name)
output_tensor = dropout(output_tensor, dropout_prob)
return output_tensor
def create_initializer(initializer_range=0.02):
"""Creates a truncated_normal_initializer with the given range."""
return tf.truncated_normal_initializer(stddev=initializer_range)
def embedding_lookup(input_ids,
vocab_size,
embedding_size=128,
initializer_range=0.02,
word_embedding_name="word_embeddings",
use_one_hot_embeddings=False):
"""Looks up words embeddings for id tensor.
- Args:
input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
ids.
vocab_size: int. Size of the embedding vocabulary.
embedding_size: int. Width of the word embeddings.
initializer_range: float. Embedding initialization range.
word_embedding_name: string. Name of the embedding table.
use_one_hot_embeddings: bool. If True, use one-hot method for word
embeddings. If False, use `tf.gather()`.
- Returns:
float Tensor of shape [batch_size, seq_length, embedding_size].
"""
This function assumes that the input is of shape [batch_size, seq_length,
num_inputs].
If the input is a 2D tensor of shape [batch_size, seq_length], we
reshape to [batch_size, seq_length, 1].
if input_ids.shape.ndims == 2:
input_ids = tf.expand_dims(input_ids, axis=[-1])
embedding_table = tf.get_variable(
name=word_embedding_name,
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range))
flat_input_ids = tf.reshape(input_ids, [-1])
if use_one_hot_embeddings:
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
output = tf.matmul(one_hot_input_ids, embedding_table)
else:
output = tf.gather(embedding_table, flat_input_ids)
input_shape = get_shape_list(input_ids)
output = tf.reshape(output,
input_shape[0:-1] + [input_shape[-1] * embedding_size])
return (output, embedding_table)
def embedding_postprocessor(input_tensor,
use_token_type=False,
token_type_ids=None,
token_type_vocab_size=16,
token_type_embedding_name="token_type_embeddings",
use_position_embeddings=True,
position_embedding_name="position_embeddings",
initializer_range=0.02,
max_position_embeddings=512,
dropout_prob=0.1):
"""Performs various post-processing on a word embedding tensor.
- Args:
input_tensor: float Tensor of shape [batch_size, seq_length,
embedding_size].
use_token_type: bool. Whether to add embeddings for `token_type_ids`.
token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
Must be specified if `use_token_type` is True.
token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
token_type_embedding_name: string. The name of the embedding table variable
for token type ids.
use_position_embeddings: bool. Whether to add position embeddings for the
position of each token in the sequence.
position_embedding_name: string. The name of the embedding table variable
for positional embeddings.
initializer_range: float. Range of the weight initialization.
max_position_embeddings: int. Maximum sequence length that might ever be
used with this model. This can be longer than the sequence length of
input_tensor, but cannot be shorter.
dropout_prob: float. Dropout probability applied to the final output tensor.
- Returns:
float tensor with same shape as `input_tensor`.
- Raises:
ValueError: One of the tensor shapes or input values is invalid.
"""
input_shape = get_shape_list(input_tensor, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
width = input_shape[2]
output = input_tensor
if use_token_type:
if token_type_ids is None:
raise ValueError("`token_type_ids` must be specified if"
"`use_token_type` is True.")
token_type_table = tf.get_variable(
name=token_type_embedding_name,
shape=[token_type_vocab_size, width],
initializer=create_initializer(initializer_range))
# This vocab will be small so we always do one-hot here, since it is always
# faster for a small vocabulary.
flat_token_type_ids = tf.reshape(token_type_ids, [-1])
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width])
output += token_type_embeddings
if use_position_embeddings:
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
with tf.control_dependencies([assert_op]):
full_position_embeddings = tf.get_variable(
name=position_embedding_name,
shape=[max_position_embeddings, width],
initializer=create_initializer(initializer_range))
# Since the position embedding table is a learned variable, we create it
# using a (long) sequence length `max_position_embeddings`. The actual
# sequence length might be shorter than this, for faster training of
# tasks that do not have long sequences.
#
# So `full_position_embeddings` is effectively an embedding table
# for position [0, 1, 2, ..., max_position_embeddings-1], and the current
# sequence has positions [0, 1, 2, ... seq_length-1], so we can just
# perform a slice.
position_embeddings = tf.slice(full_position_embeddings, [0, 0],
[seq_length, -1])
num_dims = len(output.shape.as_list())
# Only the last two dimensions are relevant (`seq_length` and `width`), so
# we broadcast among the first dimensions, which is typically just
# the batch size.
position_broadcast_shape = []
for _ in range(num_dims - 2):
position_broadcast_shape.append(1)
position_broadcast_shape.extend([seq_length, width])
position_embeddings = tf.reshape(position_embeddings,
position_broadcast_shape)
output += position_embeddings
output = layer_norm_and_dropout(output, dropout_prob)
return output
def create_attention_mask_from_input_mask(from_tensor, to_mask):
"""Create 3D attention mask from a 2D tensor mask.
- Args:
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
- Returns:
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
"""
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_shape = get_shape_list(to_mask, expected_rank=2)
to_seq_length = to_shape[1]
to_mask = tf.cast(
tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
We don't assume that from_tensor is a mask (although it could be). We
don't actually care if we attend from padding tokens (only to padding)
tokens so we create a tensor of all ones.
broadcast_ones = [batch_size, from_seq_length, 1]
broadcast_ones = tf.ones(
shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
Here we broadcast along two dimensions to create the mask.
mask = broadcast_ones * to_mask
return mask
def attention_layer(from_tensor,
to_tensor,
attention_mask=None,
num_attention_heads=1,
size_per_head=512,
query_act=None,
key_act=None,
value_act=None,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
do_return_2d_tensor=False,
batch_size=None,
from_seq_length=None,
to_seq_length=None):
"""Performs multi-headed attention from from_tensor to to_tensor.
- This is an implementation of multi-headed attention based on "Attention
is all you Need". If from_tensor and to_tensor are the same, then
this is self-attention. Each timestep in from_tensor attends to the
corresponding sequence in to_tensor, and returns a fixed-with vector.
- This function first projects
from_tensorinto a "query" tensor and
to_tensor into "key" and "value" tensors. These are (effectively) a list
of tensors of length num_attention_heads, where each tensor is of shape
[batch_size, seq_length, size_per_head].
- Then, the query and key tensors are dot-producted and scaled. These are
softmaxed to obtain attention probabilities. The value tensors are then
interpolated by these probabilities, then concatenated back to a single
tensor and returned.
- In practice, the multi-headed attention are done with transposes and
reshapes rather than actual separate tensors.
- Args:
from_tensor: float Tensor of shape [batch_size, from_seq_length,
from_width].
to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
attention_mask: (optional) int32 Tensor of shape [batch_size,
from_seq_length, to_seq_length]. The values should be 1 or 0. The
attention scores will effectively be set to -infinity for any positions in
the mask that are 0, and will be unchanged for positions that are 1.
num_attention_heads: int. Number of attention heads.
size_per_head: int. Size of each attention head.
query_act: (optional) Activation function for the query transform.
key_act: (optional) Activation function for the key transform.
value_act: (optional) Activation function for the value transform.
attention_probs_dropout_prob: (optional) float. Dropout probability of the
attention probabilities.
initializer_range: float. Range of the weight initializer.
do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
* from_seq_length, num_attention_heads * size_per_head]. If False, the
output will be of shape [batch_size, from_seq_length, num_attention_heads
* size_per_head].
batch_size: (Optional) int. If the input is 2D, this might be the batch size
of the 3D version of the `from_tensor` and `to_tensor`.
from_seq_length: (Optional) If the input is 2D, this might be the seq length
of the 3D version of the `from_tensor`.
to_seq_length: (Optional) If the input is 2D, this might be the seq length
of the 3D version of the `to_tensor`.
- Returns:
float Tensor of shape [batch_size, from_seq_length,
num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
true, this will be of shape [batch_size * from_seq_length,
num_attention_heads * size_per_head]).
- Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
seq_length, width):
output_tensor = tf.reshape(
input_tensor, [batch_size, seq_length, num_attention_heads, width])
output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
return output_tensor
from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
if len(from_shape) != len(to_shape):
raise ValueError(
"The rank of `from_tensor` must match the rank of `to_tensor`.")
if len(from_shape) == 3:
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_seq_length = to_shape[1]
elif len(from_shape) == 2:
if (batch_size is None or from_seq_length is None or to_seq_length is None):
raise ValueError(
"When passing in rank 2 tensors to attention_layer, the values "
"for `batch_size`, `from_seq_length`, and `to_seq_length` "
"must all be specified.")
Scalar dimensions referenced here:
B = batch size (number of sequences)
F = from_tensor sequence length
T = to_tensor sequence length
N = num_attention_heads
H = size_per_head
from_tensor_2d = reshape_to_matrix(from_tensor)
to_tensor_2d = reshape_to_matrix(to_tensor)
query_layer = [BF, NH]
query_layer = tf.layers.dense(
from_tensor_2d,
num_attention_heads * size_per_head,
activation=query_act,
name="query",
kernel_initializer=create_initializer(initializer_range))
key_layer = [BT, NH]
key_layer = tf.layers.dense(
to_tensor_2d,
num_attention_heads * size_per_head,
activation=key_act,
name="key",
kernel_initializer=create_initializer(initializer_range))
value_layer = [BT, NH]
value_layer = tf.layers.dense(
to_tensor_2d,
num_attention_heads * size_per_head,
activation=value_act,
name="value",
kernel_initializer=create_initializer(initializer_range))
query_layer = [B, N, F, H]
query_layer = transpose_for_scores(query_layer, batch_size,
num_attention_heads, from_seq_length,
size_per_head)
key_layer = [B, N, T, H]
key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
to_seq_length, size_per_head)
Take the dot product between "query" and "key" to get the raw
attention scores.
attention_scores = [B, N, F, T]
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(size_per_head)))
if attention_mask is not None:
# `attention_mask` = [B, 1, F, T]
attention_mask = tf.expand_dims(attention_mask, axis=[1])
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_scores += adder
Normalize the attention scores to probabilities.
attention_probs = [B, N, F, T]
attention_probs = tf.nn.softmax(attention_scores)
This is actually dropping out entire tokens to attend to, which might
seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
value_layer = [B, T, N, H]
value_layer = tf.reshape(
value_layer,
[batch_size, to_seq_length, num_attention_heads, size_per_head])
value_layer = [B, N, T, H]
value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
context_layer = [B, N, F, H]
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = [B, F, N, H]
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
if do_return_2d_tensor:
# `context_layer` = [B*F, N*H]
context_layer = tf.reshape(
context_layer,
[batch_size * from_seq_length, num_attention_heads * size_per_head])
else:
# `context_layer` = [B, F, N*H]
context_layer = tf.reshape(
context_layer,
[batch_size, from_seq_length, num_attention_heads * size_per_head])
return context_layer
def transformer_model(input_tensor,
attention_mask=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
intermediate_act_fn=gelu,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
do_return_all_layers=False,
adapter_fn=None):
"""Multi-headed, multi-layer Transformer from "Attention is All You Need".
-
This is almost an exact implementation of the original Transformer encoder.
-
See the original paper:
https://arxiv.org/abs/1706.03762
- Also see:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
- Args:
input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
seq_length], with 1 for positions that can be attended to and 0 in
positions that should not be.
hidden_size: int. Hidden size of the Transformer.
num_hidden_layers: int. Number of layers (blocks) in the Transformer.
num_attention_heads: int. Number of attention heads in the Transformer.
intermediate_size: int. The size of the "intermediate" (a.k.a., feed
forward) layer.
intermediate_act_fn: function. The non-linear activation function to apply
to the output of the intermediate/feed-forward layer.
hidden_dropout_prob: float. Dropout probability for the hidden layers.
attention_probs_dropout_prob: float. Dropout probability of the attention
probabilities.
initializer_range: float. Range of the initializer (stddev of truncated
normal).
do_return_all_layers: Whether to also return all layers or just the final
layer.
adapter_fn: (optional) trainable adapter function that takes as input a
Tensor and returns a Tensor of the same shape.
- Returns:
float Tensor of shape [batch_size, seq_length, hidden_size], the final
hidden layer of the Transformer.
- Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
if hidden_size % num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, num_attention_heads))
attention_head_size = int(hidden_size / num_attention_heads)
input_shape = get_shape_list(input_tensor, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
input_width = input_shape[2]
The Transformer performs sum residuals on all layers so the input needs
to be the same as the hidden size.
if input_width != hidden_size:
raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
(input_width, hidden_size))
We keep the representation as a 2D tensor to avoid re-shaping it back and
forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
the GPU/CPU but may not be free on the TPU, so we want to minimize them to
help the optimizer.
prev_output = reshape_to_matrix(input_tensor)
all_layer_outputs = []
for layer_idx in range(num_hidden_layers):
with tf.variable_scope("layer_%d" % layer_idx):
layer_input = prev_output
with tf.variable_scope("attention"):
attention_heads = []
with tf.variable_scope("self"):
attention_head = attention_layer(
from_tensor=layer_input,
to_tensor=layer_input,
attention_mask=attention_mask,
num_attention_heads=num_attention_heads,
size_per_head=attention_head_size,
attention_probs_dropout_prob=attention_probs_dropout_prob,
initializer_range=initializer_range,
do_return_2d_tensor=True,
batch_size=batch_size,
from_seq_length=seq_length,
to_seq_length=seq_length)
attention_heads.append(attention_head)
attention_output = None
if len(attention_heads) == 1:
attention_output = attention_heads[0]
else:
# In the case where we have other sequences, we just concatenate
# them to the self-attention head before the projection.
attention_output = tf.concat(attention_heads, axis=-1)
# Run a linear projection of `hidden_size` then add a residual
# with `layer_input`.
with tf.variable_scope("output"):
attention_output = tf.layers.dense(
attention_output,
hidden_size,
kernel_initializer=create_initializer(initializer_range))
attention_output = dropout(attention_output, hidden_dropout_prob)
if adapter_fn:
attention_output = adapter_fn(attention_output)
attention_output = layer_norm(attention_output + layer_input)
# The activation is only applied to the "intermediate" hidden layer.
with tf.variable_scope("intermediate"):
intermediate_output = tf.layers.dense(
attention_output,
intermediate_size,
activation=intermediate_act_fn,
kernel_initializer=create_initializer(initializer_range))
# Down-project back to `hidden_size` then add the residual.
with tf.variable_scope("output"):
layer_output = tf.layers.dense(
intermediate_output,
hidden_size,
kernel_initializer=create_initializer(initializer_range))
layer_output = dropout(layer_output, hidden_dropout_prob)
if adapter_fn:
layer_output = adapter_fn(layer_output)
layer_output = layer_norm(layer_output + attention_output)
prev_output = layer_output
all_layer_outputs.append(layer_output)
if do_return_all_layers:
final_outputs = []
for layer_output in all_layer_outputs:
final_output = reshape_from_matrix(layer_output, input_shape)
final_outputs.append(final_output)
return final_outputs
else:
final_output = reshape_from_matrix(prev_output, input_shape)
return final_output
def get_shape_list(tensor, expected_rank=None, name=None):
"""Returns a list of the shape of tensor, preferring static dimensions.
- Args:
tensor: A tf.Tensor object to find the shape of.
expected_rank: (optional) int. The expected rank of `tensor`. If this is
specified and the `tensor` has a different rank, and exception will be
thrown.
name: Optional name of the tensor for the error message.
- Returns:
A list of dimensions of the shape of tensor. All static dimensions will
be returned as python integers, and dynamic dimensions will be returned
as tf.Tensor scalars.
"""
if name is None:
name = tensor.name
if expected_rank is not None:
assert_rank(tensor, expected_rank, name)
shape = tensor.shape.as_list()
non_static_indexes = []
for (index, dim) in enumerate(shape):
if dim is None:
non_static_indexes.append(index)
if not non_static_indexes:
return shape
dyn_shape = tf.shape(tensor)
for index in non_static_indexes:
shape[index] = dyn_shape[index]
return shape
def reshape_to_matrix(input_tensor):
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
ndims = input_tensor.shape.ndims
if ndims < 2:
raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
(input_tensor.shape))
if ndims == 2:
return input_tensor
width = input_tensor.shape[-1]
output_tensor = tf.reshape(input_tensor, [-1, width])
return output_tensor
def reshape_from_matrix(output_tensor, orig_shape_list):
"""Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
if len(orig_shape_list) == 2:
return output_tensor
output_shape = get_shape_list(output_tensor)
orig_dims = orig_shape_list[0:-1]
width = output_shape[-1]
return tf.reshape(output_tensor, orig_dims + [width])
def assert_rank(tensor, expected_rank, name=None):
"""Raises an exception if the tensor rank is not of the expected rank.
- Args:
tensor: A tf.Tensor to check the rank of.
expected_rank: Python integer or list of integers, expected rank.
name: Optional name of the tensor for the error message.
- Raises:
ValueError: If the expected shape doesn't match the actual shape.
"""
if name is None:
name = tensor.name
expected_rank_dict = {}
if isinstance(expected_rank, six.integer_types):
expected_rank_dict[expected_rank] = True
else:
for x in expected_rank:
expected_rank_dict[x] = True
actual_rank = tensor.shape.ndims
if actual_rank not in expected_rank_dict:
scope_name = tf.get_variable_scope().name
raise ValueError(
"For the tensor `%s` in scope `%s`, the actual rank "
"`%d` (shape = %s) is not equal to the expected rank `%s`" %
(name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
AI助手
### 个人感悟
* 源自Google研究院的核心研究团队始终在技术发展的前沿阵地不断探索!在大模型时代上占据绝对重要地位的一笔贡献。
* 相较于传统的线性架构而言,在实现复杂任务时仍显不够理想。
通过加深模型的深度设计,在提升计算效率的同时实现了更长的有效推理时间序列长度安排。这一安排有助于后续应用Lora技术做好铺垫
### 参考
>
>
> * [该方法系统性地解决了大模型微调时调参困难的问题 · 语雀](https://www.yuque.com/meta95/hmc3l4/ozgy13dx4akv7v17?singleDoc#oTcdw "让天下没有难Tuning的大模型-PEFT技术简介 · 语雀")
> * [低算力大模型(如LoRA)的学习路线是什么? - 知乎](https://www.zhihu.com/question/593383416 "低算力大模型(例如 LoRA \)的学习路线是什么? - 知乎")
>
