人工神经网络的主要特征,人工神经网络主要特点
人工神经网络的特点有哪些
人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络突出的优点:(1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。
希望我的回答可以帮到您哦。
谷歌人工智能写作项目:神经网络伪原创

神经网络 的四个基本属性是什么?
神经网络 的四个基本属性:(1)非线性:非线性是自然界的普遍特征**写作猫** 。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。
由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。(2)无限制性:神经网络通常由多个连接广泛的神经元组成。
一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。
(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。
(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。
扩展资料:神经网络的特点优点:人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。参考资料:百度百科——人工神经网络。
神经网络的特点
不论何种类型的人工神经网络,它们共同的特点是,大规模并行处理,分布式存储,弹性拓扑,高度冗余和非线性运算。因而具有很髙的运算速度,很强的联想能力,很强的适应性,很强的容错能力和自组织能力。
这些特点和能力构成了人工神经网络模拟智能活动的技术基础,并在广阔的领域获得了重要的应用。
例如,在通信领域,人工神经网络可以用于数据压缩、图像处理、矢量编码、差错控制(纠错和检错编码)、自适应信号处理、自适应均衡、信号检测、模式识别、ATM流量控制、路由选择、通信网优化和智能网管理等等。
人工神经网络的研究已与模糊逻辑的研究相结合,并在此基础上与人工智能的研究相补充,成为新一代智能系统的主要方向。
这是因为人工神经网络主要模拟人类右脑的智能行为而人工智能主要模拟人类左脑的智能机理,人工神经网络与人工智能有机结合就能更好地模拟人类的各种智能活动。
新一代智能系统将能更有力地帮助人类扩展他的智力与思维的功能,成为人类认识和改造世界的聪明的工具。因此,它将继续成为当代科学研究重要的前沿。
深度学习中什么是人工神经网络?
人工神经网络(Artificial Neural Network,即ANN )是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,它是在现代 神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:(1)非线性– 非线性关系是自然界的普遍特性,人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性人工神经网络关系。
具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性– 一个 神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想 记忆是非局限性的典型例子。
(3)非常定性 –人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性–一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如 能量函数,它的极值相应于系统比较稳定的状态。
非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部 世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能人工神经网络由系统外部观察的单元。
神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。
总结:人工神经网络是一种非程序化、 适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。
人工神经网络有什么特点?
人工神经网络突出的优点(1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。
BP人工神经网络
人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。
神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。
岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。
工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。
BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。
网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。
正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。
BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。
但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。(2)BP网络模型其计算速度较慢、无法表达预测量与其相关参数之间亲疏关系。
(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。
(4)BP人工神经网络系统具有非线性、智能的特点。
较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。
因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。
