How to train your neural network?(如何训练你的神经网络)
发布时间
阅读量:
阅读量
How To train a Neural Network:
- Verify your implementation using a small batch of data while being mindful of potential issues.
- Conduct a sanity check by ensuring your initial loss is reasonable and confirming that you can attain 100% training accuracy on a minimal dataset portion.
- While training, keep an eye on the loss metrics such as training/validation accuracy. Additionally, monitor updates relative to parameter magnitudes (expecting ~1e-3) and first-layer weights in Convolutional Neural Networks.
- The two primary approaches recommended are Stochastic Gradient Descent with Nesterov Momentum or Adam optimization.
- Reduce your learning rate during training. Consider halving it after a fixed number of epochs or when validation accuracy plateaus.
- Conduct hyperparameter tuning using random search instead of grid search. Begin with broad ranges and short training periods before narrowing ranges and extending training duration.
- Formulate model ensembles to enhance performance.
如何训练神经网络
- 基于少量数据集执行梯度验证,并避免潜在问题。
- 为了确保模型的基本健壮性,请确认初始损失设置得当,并能在极小的数据比例下实现100%的训练准确度。
- 在训练过程中实时跟踪损失值、评估模型性能(包括训练和验证准确率),如果观察到异常现象,请根据参数值的变化幅度(约为1e-3)进行调整,并在处理卷积神经网络时优先考虑第一层权重。
- 推荐采用SGD配合Nesterov动量或Adam优化器。
- 在训练阶段逐步降低学习率:例如,在固定的周期结束后或每当验证集准确率达到峰值时减半学习率。
- 使用随机搜索而非网格搜索来优化超参数配置:将搜索范围设定为宽泛阶段(超参数范围较广,在每个周期内仅进行1-5次迭代)至精炼阶段(聚焦于关键参数,在每个周期内展开更多迭代)。
- 将多个模型集成起来能够显著提升性能表现。
全部评论 (0)
还没有任何评论哟~
