信息测度实例(一):信息熵、联合熵、条件熵、互信息、条件互信息
例1:均匀分布
注意,本文所举实例中对数运算均采用自然对数底数ee,并且约定:0×log0=00\times \log 0=0
假设随机变量XX,YY,ZZ:
| XX | 11 | 11 | 11 | 00 | 00 | 00 |
|---|---|---|---|---|---|---|
| YY | 00 | 11 | 11 | 11 | 00 | 00 |
| ZZ | 00 | 00 | 11 | 11 | 11 | 00 |
例1.1 信息熵
由信息熵的定义,有:
H(X)=−∑x∈Xp(x)⋅logp(x)=−12log12−12log12=log2=0.693147H(Y)=−∑y∈Yp(y)⋅logp(y)=−12log12−12log12=log2=0.693147H(Z)=−∑z∈Zp(z)⋅logp(z)=−12log12−12log12=log2=0.693147
例1.2 联合熵
由概率可知:
p(x=0,y=0)=13,p(x=0,y=1)=16 p(x=1,y=0)=16,p(x=1,y=1)=13 p\left( x=0,y=0 \right) =\frac{1}{3}\text{,}p\left( x=0,y=1 \right) =\frac{1}{6} \ \ \ \ \ p\left( x=1,y=0 \right) =\frac{1}{6}\text{,}p\left( x=1,y=1 \right) =\frac{1}{3} 则:
H(X,Y)=−∑x∈X∑y∈Yp(x,y)logp(x,y)=−16log16−13log13−13log13−16log16=13×(log6+log9)=1.32966
例1.3 条件熵
计算可得
p(x=0∣y=0)=p(x=0,y=0)p(y=0)=1312=23 p(x=1∣y=0)=p(x=1,y=0)p(y=0)=1612=13 p(x=0∣y=1)=p(x=0,y=1)p(y=1)=1612=13 p(x=1∣y=1)=p(x=1,y=1)p(y=1)=1312=23 p\left( x=0\left| y=0 \right. \right) =\frac{p\left( x=0,y=0 \right)}{p\left( y=0 \right)}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3} \ \ \ \ p\left( x=1\left| y=0 \right. \right) =\frac{p\left( x=1,y=0 \right)}{p\left( y=0 \right)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3} \ \ \ \ p\left( x=0\left| y=1 \right. \right) =\frac{p\left( x=0,y=1 \right)}{p\left( y=1 \right)}=\frac{\frac{1}{6}}{\frac{1}{2}}=\frac{1}{3} \ \ \ \ p\left( x=1\left| y=1 \right. \right) =\frac{p\left( x=1,y=1 \right)}{p\left( y=1 \right)}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3} 则
H(X∣Y=0)=−p(x=0∣y=0)⋅logp(x=0∣y=0)−p(x=1∣y=0)⋅logp(x=1∣y=0) =−23log23−13log13 =log3−23log2
H(X∣Y=1)=−p(x=0∣y=1)⋅logp(x=0∣y=1)−p(x=1∣y=1)⋅logp(x=1∣y=1) =−13log13−23log23 =log3−23log2
通过以上计算可到条件熵为:
H(X∣Y)=p(y=0)⋅H(X∣Y=0)+p(y=1)⋅H(X∣Y=1) =12×(log3−23log2)+12×(log3−23log2) =log3−23log2=0.636514 同理可计算出
H(Y∣X)=log3−23log2=0.636514 H\left( Y\left| X \right. \right) =\log 3-\frac{2}{3}\log 2=0.636514
例1.4 互信息
p(x=0,y=0)=13,p(x=0,y=1)=16,p(x=1,y=0)=16,p(x=1,y=1)=13 p\left( x=0,y=0 \right) =\frac{1}{3}\text{,}p\left( x=0,y=1 \right) =\frac{1}{6}\text{,}p\left( x=1,y=0 \right) =\frac{1}{6}\text{,}p\left( x=1,y=1 \right) =\frac{1}{3}
则XX和YY的互信息为:
I(X;Y)=p(x=1,y=0)⋅logp(x=1,y=0)p(x=1)⋅p(y=0)+p(x=1,y=1)⋅logp(x=1,y=1)p(x=1)⋅p(y=1) +p(x=0,y=0)⋅logp(x=0,y=0)p(x=0)⋅p(y=0)+p(x=0,y=1)⋅logp(x=0,y=1)p(x=0)⋅p(y=1)=16×log1612×12+13×log1312×12+13×log1312×12+16×log1612×12=13×(5log2−3log3)=0.056633
例1.5 条件互信息
p(z=0)=12,p(z=1)=12 p(x=1∣z=0)=23,p(x=0∣z=0)=13,p(x=1∣z=1)=13,p(x=0∣z=1)=23 p(y=1∣z=0)=13,p(y=0∣z=0)=23,p(y=1∣z=1)=13,p(y=0∣z=1)=23 p\left( z=0 \right) =\frac{1}{2},p\left( z=1 \right) =\frac{1}{2} \ \ \ \ p\left( \left. x=1 \right|z=0 \right) =\frac{2}{3}\text{,}p\left( \left. x=0 \right|z=0 \right) =\frac{1}{3}\text{,}p\left( \left. x=1 \right|z=1 \right) =\frac{1}{3}\text{,}p\left( \left. x=0 \right|z=1 \right) =\frac{2}{3} \ \ \ \ p\left( \left. y=1 \right|z=0 \right) =\frac{1}{3}\text{,}p\left( \left. y=0 \right|z=0 \right) =\frac{2}{3}\text{,}p\left( \left. y=1 \right|z=1 \right) =\frac{1}{3}\text{,}p\left( \left. y=0 \right|z=1 \right) =\frac{2}{3} \ 记
p11=p(x=1,y=0∣z=0)=13,p21=p(x=1,y=1∣z=0)=13,p31=p(x=0,y=0∣z=0)=13,p41=p(x=0,y=1∣z=0)=0p12=p(x=1,y=0∣z=1)=0,p22=p(x=1,y=1∣z=1)=13,p32=p(x=0,y=0∣z=1)=13,p42=p(x=0,y=1∣z=1)=13 p_{11}=p\left( \left. x=1,y=0 \right|z=0 \right) =\frac{1}{3}\text{,}p_{21}=p\left( \left. x=1,y=1 \right|z=0 \right) =\frac{1}{3}\text{,}p_{31}=p\left( \left. x=0,y=0 \right|z=0 \right) =\frac{1}{3}\text{,}p_{41}=p\left( \left. x=0,y=1 \right|z=0 \right) =0 \ \mathrm{ } \ p_{12}=p\left( \left. x=1,y=0 \right|z=1 \right) =0\text{,}p_{22}=p\left( \left. x=1,y=1 \right|z=1 \right) =\frac{1}{3}\text{,}p_{32}=p\left( \left. x=0,y=0 \right|z=1 \right) =\frac{1}{3}\text{,}p_{42}=p\left( \left. x=0,y=1 \right|z=1 \right) =\frac{1}{3}
P11=p(x=1,y=0∣z=0)p(x=1∣z=0)⋅p(y=0∣z=0)=1323×23=34,P12=p(x=1,y=0∣z=1)p(x=1∣z=1)⋅p(y=0∣z=1)=0 P21=p(x=1,y=1∣z=0)p(x=1∣z=0)⋅p(y=1∣z=0)=1323×13=32,P22=p(x=1,y=1∣z=1)p(x=1∣z=1)⋅p(y=1∣z=1)=1313×23=32 P31=p(x=0,y=0∣z=0)p(x=0∣z=0)⋅p(y=0∣z=0)=1313×23=32,P32=p(x=0,y=0∣z=1)p(x=0∣z=1)⋅p(y=0∣z=1)=1323×13=32, P41=p(x=0,y=1∣z=0)p(x=0∣z=0)⋅p(y=1∣z=0)=0,P42=p(x=0,y=1∣z=1)p(x=0∣z=1)⋅p(y=1∣z=1)=1323×23=34 故条件互信息为:
I(X;Y∣Z)=∑z∈Zp(z)∑x∈X∑y∈Yp(x,y∣z)⋅logp(x,y∣z)p(x∣z)p(y∣z) =p(z=0)×[p11⋅logP11+p21⋅logP21+p31⋅logP31+p41⋅logP41] +p(z=1)×[p12⋅logP12+p22⋅logP22+p32⋅logP32+p42⋅logP42] =12×[13log34+13log32+13log32+0]+12×[0+13log32+13log32+13log34] =log3−43log2=0.174416
