Advertisement

C++遍历获取文件夹下面所有文件名

阅读量:
复制代码
    #include <iostream>  
    #include <stdlib.h>  
    #include <stdio.h>  
    #include <string.h>  
    #ifdef linux  
    #include <unistd.h>  
    #include <dirent.h>  
    #endif  
    #ifdef WIN32  
    #include <direct.h>  
    #include <io.h>  
    #endif  
    using namespace std;
复制代码
    vector<string> getFiles(string cate_dir)  
    {  
    vector<string> files;//存放文件名  
    
    #ifdef WIN32  
    _finddata_t file;  
    long lf;  
    //输入文件夹路径  
    if ((lf=_findfirst(cate_dir.c_str(), &file)) == -1) {  
        cout<<cate_dir<<" not found!!!"<<endl;  
    } else {  
        while(_findnext(lf, &file) == 0) {  
            //输出文件名  
            //cout<<file.name<<endl;  
            if (strcmp(file.name, ".") == 0 || strcmp(file.name, "..") == 0)  
                continue;  
            files.push_back(file.name);  
        }  
    }  
    _findclose(lf);  
    #endif  
    
    #ifdef linux  
    DIR *dir;  
    struct dirent *ptr;  
    char base[1000];  
    
    if ((dir=opendir(cate_dir.c_str())) == NULL)  
        {  
        perror("Open dir error...");  
                exit(1);  
        }  
    
    while ((ptr=readdir(dir)) != NULL)  
    {  
        if(strcmp(ptr->d_name,".")==0 || strcmp(ptr->d_name,"..")==0)    ///current dir OR parrent dir  
                continue;  
        else if(ptr->d_type == 8)    ///file  
            //printf("d_name:%s/%s\n",basePath,ptr->d_name);  
            files.push_back(ptr->d_name);  
        else if(ptr->d_type == 10)    ///link file  
            //printf("d_name:%s/%s\n",basePath,ptr->d_name);  
            continue;  
        else if(ptr->d_type == 4)    ///dir  
        {  
            files.push_back(ptr->d_name);  
            /* 
                memset(base,'\0',sizeof(base)); 
                strcpy(base,basePath); 
                strcat(base,"/"); 
                strcat(base,ptr->d_nSame); 
                readFileList(base); 
            */  
        }  
    }  
    closedir(dir);  
    #endif  
    
    //排序,按从小到大排序  
    sort(files.begin(), files.end());  
    return files;  
    }

返回的是一个向量,在调用时即为files[i]。
例如,在zqh文件夹中存在1.jpg和2.jpg,则files数组中的第0个元素为'1.jpg',第1个元素为'2.jpg'。
在进行图像分类时我们使用了修改后的caffenet模型(classification.bin)并遍历文件夹中的所有图片随后将每张图片对应各类别的概率值记录到csv文件中。

复制代码
    #include <caffe/caffe.hpp>
    #ifdef USE_OPENCV
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #endif  // USE_OPENCV
    #include <algorithm>
    #include <iosfwd>
    #include <memory>
    #include <string>
    #include <utility>
    #include <vector>
    #include <fstream>  
    #include <unistd.h>  
    #include <dirent.h>
    #include <stdlib.h>      
    #ifdef USE_OPENCV
    using namespace caffe;  // NOLINT(build/namespaces)
    using std::string;
    using namespace std;
    ofstream outFile;
    
    /* Pair (label, confidence) representing a prediction. */
    typedef std::pair<string, float> Prediction;
    
    class Classifier {
     public:
      Classifier(const string& model_file,
             const string& trained_file,
             const string& mean_file,
             const string& label_file);
    
      std::vector<Prediction> Classify(const cv::Mat& img, const string file,int N = 5);
    
     private:
      void SetMean(const string& mean_file);
    
      std::vector<float> Predict(const cv::Mat& img);
    
      void WrapInputLayer(std::vector<cv::Mat>* input_channels);
    
      void Preprocess(const cv::Mat& img,
                  std::vector<cv::Mat>* input_channels);
    
     private:
      shared_ptr<Net<float> > net_;
      cv::Size input_geometry_;
      int num_channels_;
      cv::Mat mean_;
      std::vector<string> labels_;
    };
    
    Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& mean_file,
                       const string& label_file) {
    #ifdef CPU_ONLY
      Caffe::set_mode(Caffe::CPU);
    #else
      Caffe::set_mode(Caffe::GPU);
    #endif
    
      /* Load the network. */
      net_.reset(new Net<float>(model_file, TEST));
      net_->CopyTrainedLayersFrom(trained_file);
    
      CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
      CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
    
      Blob<float>* input_layer = net_->input_blobs()[0];
      num_channels_ = input_layer->channels();
      CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
      input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
    
      /* Load the binaryproto mean file. */
      SetMean(mean_file);
    
      /* Load labels. */
      std::ifstream labels(label_file.c_str());
      CHECK(labels) << "Unable to open labels file " << label_file;
      string line;
      while (std::getline(labels, line))
    labels_.push_back(string(line));
    
      Blob<float>* output_layer = net_->output_blobs()[0];
      CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
    }
    
    static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
      return lhs.first > rhs.first;
    }
    
    /* Return the indices of the top N values of vector v. */
    static std::vector<int> Argmax(const std::vector<float>& v, int N) {
      std::vector<std::pair<float, int> > pairs;
      for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], i));
      std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
    
      std::vector<int> result;
      for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
      return result;
    }
    
    /* Return the top N predictions. */
    std::vector<Prediction> Classifier::Classify(const cv::Mat& img, const string file,int N) {
      std::vector<float> output = Predict(img);
      int i;
      double sum=0;
      int cnt=0;
      int b=file.find('.'); 
      for(i=0;i<output.size();i++)
      {
    sum+=output[i];
    if(i)
    {
        outFile << file.substr(0,b) << ',' << i << ',' << output[i] << endl;  
    }
    if(i==29)
    {
        outFile << file.substr(0,b) << ',' << 30 << ',' << output[0] << endl;
    }
      }
      if(sum > 1)
      {
      cnt++;
      cout << cnt << endl;
      }
      N = std::min<int>(labels_.size(), N);
      std::vector<int> maxN = Argmax(output, N);
      std::vector<Prediction> predictions;
      for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
      }
    
      return predictions;
    }
    
    /* Load the mean file in binaryproto format. */
    void Classifier::SetMean(const string& mean_file) {
      BlobProto blob_proto;
      ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
    
      /* Convert from BlobProto to Blob<float> */
      Blob<float> mean_blob;
      mean_blob.FromProto(blob_proto);
      CHECK_EQ(mean_blob.channels(), num_channels_)
    << "Number of channels of mean file doesn't match input layer.";
    
      /* The format of the mean file is planar 32-bit float BGR or grayscale. */
      std::vector<cv::Mat> channels;
      float* data = mean_blob.mutable_cpu_data();
      for (int i = 0; i < num_channels_; ++i) {
    /* Extract an individual channel. */
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
      }
    
      /* Merge the separate channels into a single image. */
      cv::Mat mean;
      cv::merge(channels, mean);
    
      /* Compute the global mean pixel value and create a mean image
       * filled with this value. */
      cv::Scalar channel_mean = cv::mean(mean);
      mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
    }
    
    std::vector<float> Classifier::Predict(const cv::Mat& img) {
      Blob<float>* input_layer = net_->input_blobs()[0];
      input_layer->Reshape(1, num_channels_,
                       input_geometry_.height, input_geometry_.width);
      /* Forward dimension change to all layers. */
      net_->Reshape();
    
      std::vector<cv::Mat> input_channels;
      WrapInputLayer(&input_channels);
      double mul=0.00390625;
      cv::Mat out_img=img*mul;
      Preprocess(out_img, &input_channels);
    
      net_->Forward();
    
      /* Copy the output layer to a std::vector */
      Blob<float>* output_layer = net_->output_blobs()[0];
      const float* begin = output_layer->cpu_data();
      const float* end = begin + output_layer->channels();
      return std::vector<float>(begin, end);
    }
    
    /* Wrap the input layer of the network in separate cv::Mat objects
     * (one per channel). This way we save one memcpy operation and we
     * don't need to rely on cudaMemcpy2D. The last preprocessing
     * operation will write the separate channels directly to the input
     * layer. */
    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
      Blob<float>* input_layer = net_->input_blobs()[0];
    
      int width = input_layer->width();
      int height = input_layer->height();
      float* input_data = input_layer->mutable_cpu_data();
      for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
      }
    }
    
    void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
      /* Convert the input image to the input image format of the network. */
      cv::Mat sample;
      if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
      else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
      else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
      else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
      else
    sample = img;
    
      cv::Mat sample_resized;
      if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
      else
    sample_resized = sample;
    
      cv::Mat sample_float;
      if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
      else
    sample_resized.convertTo(sample_float, CV_32FC1);
    
      cv::Mat sample_normalized;
      cv::subtract(sample_float, mean_, sample_normalized);
    
      /* This operation will write the separate BGR planes directly to the
       * input layer of the network because it is wrapped by the cv::Mat
       * objects in input_channels. */
      cv::split(sample_normalized, *input_channels);
    
      CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
    }
    vector<string> getFiles(string cate_dir)  
    {
    vector<string> files;
    DIR *dir;  
    struct dirent *ptr;   
    
    if ((dir=opendir(cate_dir.c_str())) == NULL)  
        {  
        perror("Open dir error...");  
                exit(1);  
        }  
    
    while ((ptr=readdir(dir)) != NULL)  
    {  
        if(strcmp(ptr->d_name,".")==0 || strcmp(ptr->d_name,"..")==0)    ///current dir OR parrent dir  
                continue;  
        else if(ptr->d_type == 8)    ///file  
            //printf("d_name:%s/%s\n",basePath,ptr->d_name);  
            files.push_back(ptr->d_name);  
        else if(ptr->d_type == 10)    ///link file  
            //printf("d_name:%s/%s\n",basePath,ptr->d_name);  
            continue;  
        else if(ptr->d_type == 4)    ///dir  
        {  
            files.push_back(ptr->d_name);  
            /* 
                memset(base,'\0',sizeof(base)); 
                strcpy(base,basePath); 
                strcat(base,"/"); 
                strcat(base,ptr->d_nSame); 
                readFileList(base); 
            */  
        }  
    }  
    closedir(dir);    
    sort(files.begin(), files.end());  
    return files;  
    }  
    int main(int argc, char** argv) {
      if (argc != 5) {
    std::cerr << "Usage: " << argv[0]
              << " deploy.prototxt network.caffemodel"
              << " mean.binaryproto labels.txt img.jpg" << std::endl;
    return 1;
      }
      outFile.open("/home/zq/test.csv", ios::out); 
      ::google::InitGoogleLogging(argv[0]);
    
      string model_file   = argv[1];
      string trained_file = argv[2];
      string mean_file    = argv[3];
      string label_file   = argv[4];
      Classifier classifier(model_file, trained_file, mean_file, label_file);
      string filepath = "data/pigface/test/";
      vector<string> files; 
      files=getFiles(filepath);
      int size = files.size();
      cout << size << endl;  
      int j;
      for(j=0;j<size;j++)
      {
      cv::Mat img = cv::imread(filepath+files[j], -1);
      CHECK(!img.empty()) << "Unable to decode image " << files[j];
      std::vector<Prediction> predictions = classifier.Classify(img,files[j]);
    
      /* Print the top N predictions. 
      for (size_t i = 0; i < predictions.size(); ++i) {
    Prediction p = predictions[i];
    std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
              << p.first << "\"" << std::endl;
      }
      */
      }
      outFile.close();
    }
    #else
    int main(int argc, char** argv) {
      LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
    }
    #endif  // USE_OPENCV

全部评论 (0)

还没有任何评论哟~