Advertisement

MATLAB中提取多张图片的颜色及纹理特征

阅读量:

MATLAB中提取多张图片的颜色及纹理特征

查了好多资料,纹理特征提取都是单图的,自己拼拼凑凑搞出来了可以同时提取多图的纹理特征(利用灰度共生矩阵),并将最后特征矩阵保存在excel表中,这样在后续特征矩阵拼凑的时候会比较方便一点。
后边加了HSV色彩空间利用颜色直方图法提取颜色特征矩阵,特征矩阵的维数可以根据自己的需要修改,我这里提取了256维。

复制代码
    clear all;
    clc;
    %**************************************************************************
    %                   图像检索——纹理特征
    %基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵
    %所用图像灰度级均为256
    %function : T=Texture(Image)
    %Image    : 输入图像数据
    %T        : 返回15维纹理特征行向量
    %**************************************************************************
    % function T = Texture(Image)
    
    niiname=dir('C:\Users\Mus\Desktop\处理后的图像\*.png');%输入你图片的地址
    str1='C:\Users\Mus\Desktop\处理后的图像\';
    for ii=1:8
    str=[str1 niiname(ii).name];
    A = imread(str);
    [xx,yy,zz]=size(A);
    for i=1:zz
       for j=1:yy
           for k=1:xx
               if(A(k,j,i) ~= 0)
                   a=i;
                   break;
               end
           end
       end
    end
     
    G=A(:,:,a);
    Gray=imresize(G,1/40);
    [M,N] = size(Gray);
    %M = 128;
    %N = 128;
    
    %--------------------------------------------------------------------------
    %1.将各颜色分量转化为灰度
    %--------------------------------------------------------------------------
    % Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3));
    
    %--------------------------------------------------------------------------
    %2.为了减少计算量,对原始图像灰度级压缩,将Gray量化成16级
    %--------------------------------------------------------------------------
    for i = 1:M
        for j = 1:N
            for n = 1:256/16
                if (n-1)*16<=Gray(i,j)&&Gray(i,j)<=(n-1)*16+15
                    Gray(i,j) = n-1;
                end
            end
        end
    end
    
    %--------------------------------------------------------------------------
    %3.计算四个共生矩阵P,取距离为1,角度分别为0,45,90,135
    %--------------------------------------------------------------------------
    P = zeros(16,16,4);
    for m = 1:16
        for n = 1:16
            for i = 1:M
                for j = 1:N
                    if j<N&&Gray(i,j)==m-1&&Gray(i,j+1)==n-1
                        P(m,n,1) = P(m,n,1)+1;
                        P(n,m,1) = P(m,n,1);
                    end
                    if i>1&&j<N&&Gray(i,j)==m-1&&Gray(i-1,j+1)==n-1
                        P(m,n,2) = P(m,n,2)+1;
                        P(n,m,2) = P(m,n,2);
                    end
                    if i<M&&Gray(i,j)==m-1&&Gray(i+1,j)==n-1
                        P(m,n,3) = P(m,n,3)+1;
                        P(n,m,3) = P(m,n,3);
                    end
                    if i<M&&j<N&&Gray(i,j)==m-1&&Gray(i+1,j+1)==n-1
                        P(m,n,4) = P(m,n,4)+1;
                        P(n,m,4) = P(m,n,4);
                    end
                end
            end
            if m==n
                P(m,n,:) = P(m,n,:)*2;
            end
        end
    end
    
    %%---------------------------------------------------------
    % 对共生矩阵归一化
    %%---------------------------------------------------------
    for n = 1:4
        P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n)));
    end
    
    %--------------------------------------------------------------------------
    %4.对共生矩阵计算能量(角二阶矩)、熵、惯性矩(对比度)、相关及逆差距5个纹理参数
    %--------------------------------------------------------------------------
    H = zeros(1,4);
    I = H;
    Ux = H;      
    Uy = H;
    deltaX= H;  
    deltaY = H;
    C =H;
    L=H;
    for n = 1:4
        E(n) = sum(sum(P(:,:,n).^2)); %%能量
        for i = 1:16
            for j = 1:16
                if P(i,j,n)~=0
                    H(n) = -P(i,j,n)*log(P(i,j,n))+H(n); %%熵
                end
                I(n) = (i-j)^2*P(i,j,n)+I(n);  %%惯性矩
    
                Ux(n) = i*P(i,j,n)+Ux(n); %相关性中μx
                Uy(n) = j*P(i,j,n)+Uy(n); %相关性中μy
            end
        end
    end
    for n = 1:4
        for i = 1:16
            for j = 1:16
                deltaX(n) = (i-Ux(n))^2*P(i,j,n)+deltaX(n); %相关性中σx
                deltaY(n) = (j-Uy(n))^2*P(i,j,n)+deltaY(n); %相关性中σy
                C(n) = i*j*P(i,j,n)+C(n);  
                L(n)=P(i,j,n)^2/(1+(i-j)^2)+L(n);%逆差距
            end
        end
        C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n); %相关性  
    end
    
    %--------------------------------------------------------------------------
    %求 求能量、熵、惯性矩、相关的均值、标准差和方差作为15维纹理特征
    %--------------------------------------------------------------------------
    a1 = mean(E) ; 
    b1 = sqrt(cov(E));
    c1=var(E);
    
    a2 = mean(H);
    b2 = sqrt(cov(H));
    c2=var(H);
    
    a3 = mean(I) ;
    b3 = sqrt(cov(I));
    c3=var(I);
    
    a4 = mean(C);
    b4 = sqrt(cov(C));
    c4=var(C);
    
    a5=mean(L);
    b5=sqrt(cov(L));
    c5=var(L); 
    
    T(ii,:)={a1,b1,c1,a2,b2,c2,a3,b3,c3,a4,b4,c4,a5,b5,c5};
    
    %将矩阵写入ecxel中
    filename = 'GLCM纹理特征矩阵.xlsx';
    writecell(T,filename,'Sheet',1,'Range','A1');
    end
    
    
    
    
    % RGB=imread('greens.jpg'); %将图像格式文件读入为MATLAB图像对象数组数据;
    % 16*4*4, 这样提取出来的HSV特征是256维的;
    %h是色调,即所处的光谱颜色的位置,取值范围为0-360。该参数用角度量来表示,红(0º)、绿(120º)、蓝(240º)分别相隔120º。互补色分别相差180º。
    %s是饱和度(纯度),为一比例值,范围从0到1。它表示成所选颜色的纯度和该颜色最大的纯度之间的比率。S=0时,只有灰度;S=1时为纯色。
    %V是色彩的明亮程度,范围从0到1。有一点要注意:它和亮度之间并没有直接的联系。
    
    % function [m]=HSV(RGB)
    % [M,N,~] = size(RGB);
    % [h,s,v] = rgb2hsv(RGB);
    clear all;
    clc;
    niiname=dir('C:\Users\Mus\Desktop\颜色特征提取图像\*.png');
    str1='C:\Users\Mus\Desktop\颜色特征提取图像\';
    for ii=1:8
    str=[str1 niiname(ii).name];
    A = imread(str);
    [xx,yy,zz]=size(A);
    for i=1:zz
       for j=1:yy
           for k=1:xx
               if(A(k,j,i) ~= 0)
                   a=i;
                   break;
               end
           end
       end
    end
     
    [M,N,~] = size(A);
    [h,s,v] = rgb2hsv(A);
     a=zeros(8,256);
    H = h; S = s; V = v;
    h = h*360;      %转换为HSV格式后h的值变为0-1,所以要乘以360来进行量化
    %H量化为16级 S量化为4级 V量化为4级
    for i = 1:M
    for j = 1:N
        if h(i,j)<=15||h(i,j)>345
            H(i,j) = 0;
        end
        if h(i,j)<=25&&h(i,j)>15
            H(i,j) = 1;
        end
        if h(i,j)<=45&&h(i,j)>25
            H(i,j) = 2;
        end
        if h(i,j)<=55&&h(i,j)>45
            H(i,j) = 3;
        end
        if h(i,j)<=80&&h(i,j)>55
            H(i,j) = 4;
        end
        if h(i,j)<=108&&h(i,j)>80
            H(i,j) = 5;
        end
        if h(i,j)<=140&&h(i,j)>108
            H(i,j) = 6;
        end
        if h(i,j)<=165&&h(i,j)>140
            H(i,j) = 7;
        end
        if h(i,j)<=190&&h(i,j)>165
            H(i,j) = 8;
        end
        if h(i,j)<=220&&h(i,j)>190
            H(i,j) = 9;
        end
        if h(i,j)<=255&&h(i,j)>220
            H(i,j) = 10;
        end
        if h(i,j)<=275&&h(i,j)>255
            H(i,j) = 11;
        end
        if h(i,j)<=290&&h(i,j)>275
            H(i,j) = 12;
        end
        if h(i,j)<=316&&h(i,j)>290
            H(i,j) = 13;
        end
        if h(i,j)<=330&&h(i,j)>316
            H(i,j) = 14;
        end
        if h(i,j)<=345&&h(i,j)>330
            H(i,j) = 15;
        end
    end
    end
    for i = 1:M
    for j = 1:N
        if s(i,j)<=0.15&&s(i,j)>0
            S(i,j) = 0;
        end
        if s(i,j)<=0.4&&s(i,j)>0.15
            S(i,j) = 1;
        end
        if s(i,j)<=0.75&&s(i,j)>0.4
            S(i,j) = 2;
        end
        if s(i,j)<=1&&s(i,j)>0.75
            S(i,j) = 3;
        end
    end
    end
    for i = 1:M
    for j = 1:N
        if v(i,j)<=0.15&&v(i,j)>0
            V(i,j) = 0;
        end
        if v(i,j)<=0.4&&v(i,j)>0.15
            V(i,j) = 1;
        end
        if v(i,j)<=0.75&&v(i,j)>0.4
            V(i,j) = 2;
        end
        if v(i,j)<=1&&v(i,j)>0.75
            V(i,j) = 3;
        end
    end
    end
    for  i = 1:M
    for j = 1:N
        L(i,j) = H(i,j)*16+S(i,j)*4+V(i,j); %归一化
    end
    end
    for i = 0:255
    HSVHist(i+1) = size(find(L==i),1);
    end
       m(ii,:)=HSVHist/sum(HSVHist); 
       filename = '颜色直方图颜色特征矩阵.xlsx';
    writematrix(m,filename,'Sheet',1,'Range','A1');
    end

兄弟们,我看最近很多人评论,说索引不对,在这先解释下上边这个代码的读文件部分是我copy的,这个ii变量是你文件夹里图片的数目,还有那个循环是文件夹里图片数量,我直接写死了,因为我当时做测试只有八张图片。

上边这个代码属实是有点捞了现在,因为当时一直在改,想封装成函数,但是老不对,最后我改出来了,就放在下边了,有问题自己看着改改,然后你也可以加write函数或者是save直接保存成矩阵。读文件的程序我就不贴了,只要能读出来你文件夹里的图片这个应该都能用。

复制代码
    %**************************************************************************
    %                   图像检索——纹理特征
    %基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵
    %所用图像灰度级均为256
    %function : T=Texture(Image)
    %Image    : 输入图像数据
    %T        : 返回15维纹理特征行向量
    %**************************************************************************
    function Tnum = Extract_GLCM_Features(Image)
    
    [~,~,totalNum] = size(Image);
    Tnum = [];
    for i = 1 : totalNum
    P = graycomatrix(Image(:,:,i),'Offset',[0,1;-1,1;-1,0;-1,-1],'NumLevels',16);
    %%---------------------------------------------------------
    % 对共生矩阵归一化
    %%---------------------------------------------------------
    for n = 1:4
        P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n)));
    end
    
    %--------------------------------------------------------------------------
    %4.对共生矩阵计算能量(角二阶矩)、熵、惯性矩(对比度)、相关及逆差距5个纹理参数
    %--------------------------------------------------------------------------
       
    for n = 1:4 
    H = zeros(1,4);
    I = H;
    Ux = H;      
    Uy = H;
    deltaX= H;  
    deltaY = H;
    C =H;
    L=H;
    T=[];
        E(n) = sum(sum(P(:,:,n).^2)); %%能量
        for i = 1:16
            for j = 1:16
                if P(i,j,n)~=0
                    H(n) = -P(i,j,n)*log(P(i,j,n))+H(n); %%熵
                end
                I(n) = (i-j)^2*P(i,j,n)+I(n);  %%惯性矩
    
                Ux(n) = i*P(i,j,n)+Ux(n); %相关性中μx
                Uy(n) = j*P(i,j,n)+Uy(n); %相关性中μy
            end
        end
    end
    for n = 1:4
        for i = 1:16
            for j = 1:16
                deltaX(n) = (i-Ux(n))^2*P(i,j,n)+deltaX(n); %相关性中σx
                deltaY(n) = (j-Uy(n))^2*P(i,j,n)+deltaY(n); %相关性中σy
                C(n) = i*j*P(i,j,n)+C(n);  
                L(n)=P(i,j,n)^2/(1+(i-j)^2)+L(n);%逆差距
            end
        end
        C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n); %相关性  
       
    end
    
    %--------------------------------------------------------------------------
    %求 求能量、熵、惯性矩、相关的均值、标准差和方差作为15维纹理特征
    %--------------------------------------------------------------------------
    %     T=[T;E(1),E(2),E(3),E(4),H(1), H(2), H(3), H(4),I(1),I(2),I(3),I(4),L(1),L(2),L(3),L(4),C(1),C(2),C(3),C(4)];
    %用20维的数据试了一下发现没有下边那个好,大家完了可以多试试看看结果怎么样。
    %     T=mapminmax(T,0,1);
    %     Tnum=[Tnum;T];
    
     a1 = mean(E) ; 
    b1 = sqrt(cov(E));
    c1=var(E);
    
    a2 = mean(H);
    b2 = sqrt(cov(H));
    c2=var(H);
    
    a3 = mean(I) ;
    b3 = sqrt(cov(I));
    c3=var(I);
    
    a4 = mean(C);
    b4 = sqrt(cov(C));
    c4=var(C);
    
    a5=mean(L);
    b5=sqrt(cov(L));
    c5=var(L); 
    
    T=[T;a1,b1,c1,a2,b2,c2,a3,b3,c3,a4,b4,c4,a5,b5,c5];
    T=mapminmax(T,0,1);
    Tnum=[Tnum;T];
    
    %将矩阵写入ecxel中
    %     filename = 'GLCM纹理特征矩阵.xlsx';
    %     writematrix(Tnum,filename,'Sheet',1,'Range','A1');
    end
    end
    
    
    
    function [a,mnum1]=Extract_HSVhist_Features1(A,i,j)
    global mnum1;
    [M,N,~] = size(A);
    a= rgb2hsv(A);
    h= a(:,:,1);
    s = a(:,:,2);
    v = a(:,:,3);
    H = h; S = s; V = v;
    h = h*360;      %转换为HSV格式后h的值变为0-1,所以要乘以360来进行量化
    %H量化为16级 S量化为4级 V量化为4级
    
    
    % mnum=[];
    % ii=length(mnum);
    for iii = 1:M
    for ii = 1:N
        if h(iii,ii)<=15||h(iii,ii)>345
            H(iii,ii) = 0;
        end
        if h(iii,ii)<=25&&h(iii,ii)>15
            H(iii,ii) = 1;
        end
        if h(iii,ii)<=45&&h(iii,ii)>25
            H(iii,ii) = 2;
        end
        if h(iii,ii)<=55&&h(iii,ii)>45
            H(iii,ii) = 3;
        end
        if h(iii,ii)<=80&&h(iii,ii)>55
            H(iii,ii) = 4;
        end
        if h(iii,ii)<=108&&h(iii,ii)>80
            H(iii,ii) = 5;
        end
        if h(iii,ii)<=140&&h(iii,ii)>108
            H(iii,ii) = 6;
        end
        if h(iii,ii)<=165&&h(iii,ii)>140
            H(iii,ii) = 7;
        end
        if h(iii,ii)<=190&&h(iii,ii)>165
            H(iii,ii) = 8;
        end
        if h(iii,ii)<=220&&h(iii,ii)>190
            H(iii,ii) = 9;
        end
        if h(iii,ii)<=255&&h(iii,ii)>220
            H(iii,ii) = 10;
        end
        if h(iii,ii)<=275&&h(iii,ii)>255
            H(iii,ii) = 11;
        end
        if h(iii,ii)<=290&&h(iii,ii)>275
            H(iii,ii) = 12;
        end
        if h(iii,ii)<=316&&h(iii,ii)>290
            H(iii,ii) = 13;
        end
        if h(iii,ii)<=330&&h(iii,ii)>316
            H(iii,ii) = 14;
        end
        if h(iii,ii)<=345&&h(iii,ii)>330
            H(iii,ii) = 15;
        end
    end
    end
    for iii = 1:M
    for ii = 1:N
        if s(iii,ii)<=0.15&&s(iii,ii)>0
            S(iii,ii) = 0;
        end
        if s(iii,ii)<=0.4&&s(iii,ii)>0.15
            S(iii,ii) = 1;
        end
        if s(iii,ii)<=0.75&&s(iii,ii)>0.4
            S(iii,ii) = 2;
        end
        if s(iii,ii)<=1&&s(iii,ii)>0.75
            S(iii,ii) = 3;
        end
    end
    end
    for iii = 1:M
    for ii = 1:N
        if v(iii,ii)<=0.15&&v(iii,ii)>0
            V(iii,ii) = 0;
        end
        if v(iii,ii)<=0.4&&v(iii,ii)>0.15
            V(iii,ii) = 1;
        end
        if v(iii,ii)<=0.75&&v(iii,ii)>0.4
            V(iii,ii) = 2;
        end
        if v(iii,ii)<=1&&v(iii,ii)>0.75
            V(iii,ii) = 3;
        end
    end
    end
    for  iii = 1:M
    for ii = 1:N
        L(iii,ii) = H(iii,ii)*16+S(iii,ii)*4+V(iii,ii); %归一化
    end
    end
    for iii = 0:255
    HSVHist(iii+1) = size(find(L==iii),1);
    end
       m=HSVHist/sum(HSVHist); 
       jj=(192)*(i-1)+j;%(训练集)
    % jj=48*(i-1)+j-192;%(测试集,训练集)这里是测试集和训练集我分开读取的,前边程序一模一样,只用修改这一行就行了,数字表示的含义在后边注释,大家照着修改一下就行了。
     mnum1(jj,:)=m;
    %    filename = '颜色直方图颜色特征矩阵.xlsx';
    %       writematrix( mnum,filename,'Sheet',1,'Range','A1');
    % end
    end

说明一下,这个颜色特征提取函数当时确实改了很长时间,我参考的程序格式是这个博主的,大家可以看一下,参考博主。这个代码格式我很喜欢,后期在这个格式上添加修改也比较方便,大家可以找找灵感。

全部评论 (0)

还没有任何评论哟~