Advertisement

【Data Privacy顶会论文笔记汇总】

阅读量:
Data Privacy顶会论文笔记汇总

data privacy
联邦学习调研benchmark 汇总

一. 属性推理攻击

  • 联邦学习或协作学习 + 执行主任务(target attribute)的同时 推测参与者的训练数据是否有目标属性

1.Exploiting Unintended Feature Leakage in Collaborative Learning [SP19]

2.Honest-but-Curious Nets Sensitive Attributes of Private Inputs [CCS2021]

  • 纵向联邦学习 + 对被动方发起特征推理攻击

3.Feature inference attack on model predictions in vertical federated learning [ICDE2021]

  • 纵向联邦学习 + 对主动方发起标签推理攻击

4.Label Inference Attacks Against Vertical Federated Learning. [usenix22]

二. 成员推理攻击

  • 机器学习 ML + 推断成员样本是否在目标模型(ML)的训练数据集中

5.Membership Inference Attacks Against Machine Learning Models [SP17]

  • 生成对抗网络GAN + 推断成员样本是否在目标模型GAN的训练数据集中

6.GAN-Leaks: A Taxonomy of Membership Inference Attacks against Generative Models [CCS20]

三. 梯度反转攻击

  • 联邦学习 + 梯度反转重构参与方训练数据

7.Inverting Gradients - How easy is it to break privacy in federated learning? [CVPR22]

全部评论 (0)

还没有任何评论哟~