Advertisement

基因的富集分析

阅读量:

利用RNA_seq差异表达分析方法获得一组候选基因后

1、安装
复制代码
    source("https://bioconductor.org/biocLite.R")
    biocLite("clusterProfiler")
    biocLite("topGO")
    install.packages("DOSE")
    
      
      
      
      
    
    代码解读

需要的文件有3个,格式见下图。

复制代码
    library("clusterProfiler")
    library(ggplot2)
    library(stringr)
    setwd("/Users/mashengwei/Desktop/TGACv1/WGCNA/")
    ####cellular_component#####
    gene <- read.csv(gene_list.txt",header=FALSE,sep="\t")
    gene <- as.factor(gene$V1)
    term2gene <- read.csv("cellular_component_Go_term_gene.txt",header=TRUE,sep="\t")
    term2name <- read.csv("GO_name.txt",header=TRUE,sep="\t")
    x <- enricher(gene,TERM2GENE=term2gene,TERM2NAME=term2name)
    out_file <- paste("TSG_nearest_CG_cellular_component_enricher.out.txt",sep ="\t")
    write.csv(x,out_file)
    dotplot(x)
    ggsave(filename="dotplot_cellular_component.png",dpi=600)
    dev.off()
    
    ####molecular_function#####
    gene <- read.csv("gene_list2.txt",header=FALSE,sep="\t")
    gene <- as.factor(gene$V1)
    term2gene <- read.csv("molecular_function_Go_term_gene.txt",header=TRUE,sep="\t")
    term2name <- read.csv("GO_name.txt",header=TRUE,sep="\t")
    x <- enricher(gene,TERM2GENE=term2gene,TERM2NAME=term2name)
    out_file <- paste("molecular_function_enricher.out.txt",sep ="\t")
    write.csv(x,out_file)
    dotplot(x)
    ggsave(filename="dotplot_molecular_function.png",dpi=600)
    dev.off()
    
    ####biological_process#####
    gene <- read.csv("gene_list3.txt",header=FALSE,sep="\t")
    gene <- as.factor(gene$V1)
    term2gene <- read.csv("biological_process_Go_term_gene.txt",header=TRUE,sep="\t")
    term2name <- read.csv("GO_name.txt",header=TRUE,sep="\t")
    x <- enricher(gene,TERM2GENE=term2gene,TERM2NAME=term2name)
    out_file <- paste("process_enricher.out.txt",sep ="\t")
    write.csv(x,out_file)
    dotplot(x) + scale_y_discrete(labels=function(y) str_wrap(y, width=10))
    ggsave(filename="dotplot_biological_process.png",dpi=600)
    dev.off()
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    代码解读
这里写图片描述

将GO信息换成KEGG pathway信息即可进行KEGG pathway分析。

全部评论 (0)

还没有任何评论哟~