Advertisement

机器学习的医疗乳腺癌数据的乳腺癌疾病预测

阅读量:

项目视频讲解:以机器学习算法为基础的医疗乳腺癌数据分析与预测完整代码及数据集提供_哔哩哔哩

效果演示:

代码:

复制代码
 #第一步!导入我们需要的工具

    
 import numpy as np 
    
 import pandas as pd 
    
 import matplotlib.pyplot as plt
    
 import seaborn as sns 
    
 %matplotlib inline
    
 from sklearn.linear_model import LogisticRegression 
    
 from sklearn.model_selection import train_test_split 
    
 from sklearn.model_selection import KFold 
    
 from sklearn.model_selection import GridSearchCV
    
 from sklearn.ensemble import RandomForestClassifier
    
 from sklearn.naive_bayes import GaussianNB
    
 from sklearn.neighbors import KNeighborsClassifier
    
 from sklearn.tree import DecisionTreeClassifier
    
 from sklearn import svm
    
 from sklearn import metrics
    
 import warnings
    
 warnings.filterwarnings('ignore')
    
    
    
    
    代码解读
复制代码
 data.drop("Unnamed: 32",axis=1,inplace=True)

    
 data.drop("id",axis=1,inplace=True)
    
 data.columns
    
    
    
    
    代码解读
复制代码
 features_mean= list(data.columns[1:11])

    
 features_se= list(data.columns[11:20])
    
 features_worst=list(data.columns[21:31])
    
 print(features_mean)
    
 print("-----------------------------------")
    
 print(features_se)
    
 print("------------------------------------")
    
 print(features_worst)
    
    
    
    
    代码解读
复制代码
 data['diagnosis']=data['diagnosis'].map({'M':1,'B':0})

    
 data.describe() 
    
    
    
    
    代码解读
复制代码
 corr = data[features_mean].corr()

    
 plt.figure(figsize=(14,14))
    
 sns.heatmap(corr, cbar = True,  square = True, annot=True, fmt= '.2f',annot_kws={'size': 15},
    
        xticklabels= features_mean, yticklabels= features_mean,
    
        cmap= 'coolwarm')
    
    
    
    
    代码解读

利用医疗乳腺癌数据作为研究资源-文库

倚赖于医疗乳腺癌的数据作为参考文献-文库

依赖于用于医学乳腺疾病诊断的数据集-文库

全部评论 (0)

还没有任何评论哟~