Python-OpenCv-答题卡识别
发布时间
阅读量:
阅读量
前言
用OpenCv进行答题卡的扫描获取信息,其中用到平滑处理,边缘检测,透视变换,坐标点处理
一、轮廓检测
import cv2
import numpy as np
def cv_show(name,img):
cv2.imshow(name,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
ANSWER_KEY = {0:1,1:4,2:0,3:3,4:1}
img = cv2.imread("test_01.png")
contours_Img = img.copy()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#灰度图
blur = cv2.GaussianBlur(gray,(5,5),0)#高斯(平滑处理)
edge = cv2.Canny(blur,75,200)#边缘检测
#轮廓检测
cnts,h = cv2.findContours(edge,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#外边缘
#cnts = cv2.findContours(edge,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)【0】功能一样
cv2.drawContours(img,cnts,-1,(0,255,0),2)#绘制轮廓
cv_show("img",img)

二、轮廓排序,透视变换
def order_points(pts):
rect = np.zeros((4,2),dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
d = np.diff(pts,axis=1)
rect[1]= pts[np.argmin(d)]
rect[3]= pts[np.argmax(d)]
return rect
def four_point_transform(img,pts):
rect = order_points(pts)
(tl,tr,br,bl) = rect
widthA = np.sqrt(((br[0] - bl[0])**2)+((br[1] - bl[1])**2))
#y2-y1的平方+x2-x1的平方再开根号
widthB = np.sqrt(((tr[0] - tl[0])**2)+((tr[1] - tl[1])**2))
maxWidth = max(int(widthA),int(widthB))
heightA = np.sqrt(((tr[0] - br[0])**2)+((tr[1] - br[1])**2))
heightB = np.sqrt(((tl[0] - bl[0])**2)+((tl[1] - bl[1])**2))
maxHeight = max(int(heightA),int(heightB))
dst =np.array([[0,0],\
[maxWidth - 1,0],\
[maxWidth - 1,maxHeight - 1,],\
[0,maxHeight - 1]],dtype = "float32")
M =cv2.getPerspectiveTransform(rect,dst)
warp = cv2.warpPerspective(img,M,(maxWidth,maxHeight))
return warp#返回变换后的结果
dotCnt = None
if len(cnts)>0:
cnts = sorted(cnts, key=cv2.contourArea,reverse = True)
for c in cnts:
peri = cv2.arcLength(c,True)
approx = cv2.approxPolyDP(c,0.02*peri,True)
if len(approx)==4:
dotCnt=approx
warp = four_point_transform(gray,dotCnt.reshape(4,2))
cv_show("warp",warp)

三、寻找圆轮廓
def sort_contours(cnts,method="left-to-right")
reverse = False
i = 0
if method == "right-to-left" or method=="bottom-to-top":
reverse = True
if method == "top-to-bottom" or method=="bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
(cnts,boundingBoxes) = zip(*sorted(zip(cnts,boundingBoxes),\
key=lambda b:b[1][i], reverse=reverse))
return cnts,boundingBoxes
thresh = cv2.threshold(warp,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
thresh_contours = thresh.copy()
cnts,h = cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(thresh_contours,cnts,-1,(0,255,0),2)
cv_show("thresh_contours",thresh_contours)

四.最终对比结果
questionCnts = []
for c in cnts:
(x,y,w,h) = cv2.boundingRect(c)
ar = w / float(h)#宽高比
if w > 20 and h > 20 and ar > 0.9 and ar < 1.1:#宽大于20个像素.....
questionCnts.append(c)
questionCnts = sort_contours(questionCnts, method = "top-to-bottom")
cv2.drawContours(warp,questionCnts,1,(0,255,255),2)
correct = 0
for (q,i) in enumerate(np.arange(0,len(questionCnts),5)):
cnts = sort_contours(questionCnts[i:i + 5])[0]
bubbled = None
for (j,c) in enumerate(cnts):
mask = np.zeros(thresh.shape,dtype="uint8")
cv2.drawContours(mask,[c],-1,255,-1)
cv_show("mask",mask)
mask = cv2.bitwise_and(thresh,thresh,mask = mask)
total = cv2.countNonZero(mask)#看mask里面那个是空的
if bubbled is None or total > bubbled[0]:
bubbled = (total,j)
color = (0,0,255)
k = ANSWER_KEY[q]
if k == bubbled[1]:
color = (0,255,0)
correct += 1
cv2.drawContours(warp,[cnts[k]],-1,color,3)
score = (correct / 5.0)*100
cv2.putText(warp,"Total:{:.2f}".format(score),(10,30),cv2.FONT_HERSHEY_SIMPLEX,\
0.9,(0,0,0),2)
cv_show("warp",warp)

全部评论 (0)
还没有任何评论哟~
