Advertisement

深度学习之图像分割结果可视化

阅读量:

深度学习之图像分割结果可视化

在查看分割效果时,默认将正确识别的部分以白色显示,默认背景设置为黑色;对于误检区域,则以红色标注;而漏检的部分则用绿色表示。

对比结果如下:

可视化之前
可视化之后

基于python的实现代码如下:

复制代码
    import os
    import cv2
    
    def clmap(v, k, upBound): #mul and clamp
    val = v * k
    if val > upBound:
        return upBound
    else:
        return val
    source_path1 =r'G:\2\...' # <----------标签源文件路径
    source_path2 =r'G:\2\...' # <----------结果源文件路径
    target_path = r'G:\2\...' # <----------输出目标文件路径
    
    
    image_list = os.listdir(source_path1)  # 获得文件名
    
    i = 0
    for file in image_list:
    print(source_path1 + "\ " + file)
    img_2 = cv2.imread(source_path1 + "\ " + file)  # 循环读取图片
    img_1 = cv2.imread(source_path2 +  "\ " + file)  # 循环读取图片
    img_3 = cv2.imread(r'G:\2\...')  # 纯黑色背景图片
       
    dif = img_3.copy()
    show_dif = dif.copy()  # dif image for show only
    
    width = img_3.shape[0]  # get width
    height = img_3.shape[1]  # get height
    
    for i in range(width):
        for j in range(height):
            diff = int(img_1[i, j][0]) - int(img_2[i, j][0])
            if diff < 0:
                show_dif[i, j] = [255, clmap(abs(diff), 10, 255), 255]
                
            elif diff > 0:
                show_dif[i, j] = [255, 255, clmap(abs(diff), 10, 255)]
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-16/4pwEeWCTjs7zM2hXDVSQrl6N3YZa.png)

创作不易,还请支持:

在这里插入图片描述

全部评论 (0)

还没有任何评论哟~