数据库领域目前的研究方向
概述了过去两年SIGMOD、ICDE和VLDB等顶级会议的研究成果。指出当前数据库研究的主要方向包括数据智能分析、分布式计算与系统优化以及AI技术在数据处理中的应用等方面。
(1)使用MapReduce来处理一些传统的问题
Efficient parallel set-similarity joins using MapReduce(SIGMOD 2010)
Scalable distributed non-negative matrix factorization is used for analyzing binary relationship data of web-scale
mapreduce(www 2010)
A comparison of join algorithms for log processing in MapReduce(SIGMOD 2010)
(2)MapReduce的优化(性能、索引、查询语言等),例如:
MapDupReducer : Detecting Near Duplicates over Massive(SIGMOD 2010)
Mapdupreducer: detecting near duplicates over massive datasets(ICDE)
The Performance of MapReduce: An Indepth Study(VLDB 2010)
On single-pass indexing with MapReduce(SIGIR 2009)
ASSET Queries: A Declarative Alternative to MapReduce (SIGMOD 2009)
MR-Scope: A Real-Time Tracing Tool for MapReduce (HPDC 2010)
A Platform for Scalable One-pass Analytics using MapReduce(SIGMOD 2011)
(3) MapReduce+PDBMS(NoSQL+SQL)
Integrating hadoop and parallel DBMs(SIGMOD 2010)
HadoopDB:基于MapReduce技术和数据库管理系统的混合体用于分析场景
Workloads(VLDB 2009)
A comparison of approaches to large-scale data analysis(ICDE 2009)
(4) 列存储以及行列混合存储机制
Read-Optimized Databases, In Depth(VLDB 2008)
ColumnStores vs. RowStores: How Different Are They Really?(SIGMOD 2008)
(5)支持特殊数据处理的专用数据库的研究
ArrayStore: An Efficient Storage Manager for Handling Complex Parallel Array Processing Tasks (SIGMOD 2011)
Overview of SciDB(SIGMOD 2010)
本文的部分文章列表源自[此处链接](可直接点击访问),特致谢!
