【保姆级教程】YOLOv8_OBB旋转目标检测:训练自己的数据集(2)
发布时间
阅读量:
阅读量
一、YOLOV8环境准备
1.1 下载安装最新的YOLOv8代码
仓库地址: https://github.com/ultralytics/ultralytics
1.2 配置环境
pip install pyproject.dependencies https://pypi.tuna.tsinghua.edu.cn/simple

二、数据准备
在Markdown格式下进行改写
2.1.1 拉取roLabelImg源码
仓库地址:https://github.com/cgvict/roLabelImg
2.1.2 打开roLabelImg软件
步骤一:先使用Anaconda Prompt启动labeme标注工具
步骤二:然后,运行2.1.1节中roLabelImg文件下的roLabelImg.py文件

打开的roLabelImg标注软件界面如下:

2.2 标注自己的数据

2.3 数据转换
2.3.1 运行下面代码,将xml标签格式转为txt标签格式
# 文件名称 :roxml_to_dota.py
# 功能描述 :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
# 再转换成dota格式的txt文件
# 把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标x1,y1,x2,y2,x3,y3,x4,y4
import os
import xml.etree.ElementTree as ET
import math
cls_list = ['zebracrossing'] #修改为自己的标签
def edit_xml(xml_file, dotaxml_file):
"""
修改xml文件
:param xml_file:xml文件的路径
:return:
"""
# dxml_file = open(xml_file,encoding='gbk')
# tree = ET.parse(dxml_file).getroot()
tree = ET.parse(xml_file)
objs = tree.findall('object')
for ix, obj in enumerate(objs):
x0 = ET.Element("x0") # 创建节点
y0 = ET.Element("y0")
x1 = ET.Element("x1")
y1 = ET.Element("y1")
x2 = ET.Element("x2")
y2 = ET.Element("y2")
x3 = ET.Element("x3")
y3 = ET.Element("y3")
# obj_type = obj.find('bndbox')
# type = obj_type.text
# print(xml_file)
if (obj.find('robndbox') == None):
obj_bnd = obj.find('bndbox')
obj_xmin = obj_bnd.find('xmin')
obj_ymin = obj_bnd.find('ymin')
obj_xmax = obj_bnd.find('xmax')
obj_ymax = obj_bnd.find('ymax')
# 以防有负值坐标
xmin = max(float(obj_xmin.text), 0)
ymin = max(float(obj_ymin.text), 0)
xmax = max(float(obj_xmax.text), 0)
ymax = max(float(obj_ymax.text), 0)
obj_bnd.remove(obj_xmin) # 删除节点
obj_bnd.remove(obj_ymin)
obj_bnd.remove(obj_xmax)
obj_bnd.remove(obj_ymax)
x0.text = str(xmin)
y0.text = str(ymax)
x1.text = str(xmax)
y1.text = str(ymax)
x2.text = str(xmax)
y2.text = str(ymin)
x3.text = str(xmin)
y3.text = str(ymin)
else:
obj_bnd = obj.find('robndbox')
obj_bnd.tag = 'bndbox' # 修改节点名
obj_cx = obj_bnd.find('cx')
obj_cy = obj_bnd.find('cy')
obj_w = obj_bnd.find('w')
obj_h = obj_bnd.find('h')
obj_angle = obj_bnd.find('angle')
cx = float(obj_cx.text)
cy = float(obj_cy.text)
w = float(obj_w.text)
h = float(obj_h.text)
angle = float(obj_angle.text)
obj_bnd.remove(obj_cx) # 删除节点
obj_bnd.remove(obj_cy)
obj_bnd.remove(obj_w)
obj_bnd.remove(obj_h)
obj_bnd.remove(obj_angle)
x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)
x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)
x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)
x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)
# obj.remove(obj_type) # 删除节点
obj_bnd.append(x0) # 新增节点
obj_bnd.append(y0)
obj_bnd.append(x1)
obj_bnd.append(y1)
obj_bnd.append(x2)
obj_bnd.append(y2)
obj_bnd.append(x3)
obj_bnd.append(y3)
tree.write(dotaxml_file, method='xml', encoding='utf-8') # 更新xml文件
# 转换成四点坐标
def rotatePoint(xc, yc, xp, yp, theta):
xoff = xp - xc;
yoff = yp - yc;
cosTheta = math.cos(theta)
sinTheta = math.sin(theta)
pResx = cosTheta * xoff + sinTheta * yoff
pResy = - sinTheta * xoff + cosTheta * yoff
return str(int(xc + pResx)), str(int(yc + pResy))
def totxt(xml_path, out_path):
# 想要生成的txt文件保存的路径,这里可以自己修改
files = os.listdir(xml_path)
i = 0
for file in files:
tree = ET.parse(xml_path + os.sep + file)
root = tree.getroot()
name = file.split('.')[0]
output = out_path + '\ ' + name + '.txt'
file = open(output, 'w')
i = i + 1
objs = tree.findall('object')
for obj in objs:
cls = obj.find('name').text
box = obj.find('bndbox')
x0 = int(float(box.find('x0').text))
y0 = int(float(box.find('y0').text))
x1 = int(float(box.find('x1').text))
y1 = int(float(box.find('y1').text))
x2 = int(float(box.find('x2').text))
y2 = int(float(box.find('y2').text))
x3 = int(float(box.find('x3').text))
y3 = int(float(box.find('y3').text))
if x0 < 0:
x0 = 0
if x1 < 0:
x1 = 0
if x2 < 0:
x2 = 0
if x3 < 0:
x3 = 0
if y0 < 0:
y0 = 0
if y1 < 0:
y1 = 0
if y2 < 0:
y2 = 0
if y3 < 0:
y3 = 0
for cls_index, cls_name in enumerate(cls_list):
if cls == cls_name:
file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls, cls_index))
file.close()
# print(output)
print(i)
if __name__ == '__main__':
# -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----
roxml_path = r'D:\data\yolov8_obb\xml'
dotaxml_path = r'D:\data\yolov8_obb\xml'
out_path = r'D:\data\yolov8_obb\xml'
filelist = os.listdir(roxml_path)
for file in filelist:
edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))
# -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----
totxt(dotaxml_path, out_path)
运行上面代码,就可以获得TXT格式标签文件

2.3.2 使用YOLOv8的标签转换工具
于项目代码根目录中搭建所需文件夹,并将其图片和标签文件放置于指定位置。

步骤二:基于第三方开源项目VOC的数据集编写的数据转换模块,在此建议对类别名称进行调整以适应自身数据集的需求。请对以下代码进行修改:...

步骤三:运行下面的代码
import sys
sys.path.append('D:/study/cnn/yolo/ultralytics')
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('D:/study/cnn/yolo/ultralytics/data')
因部分用户在评论区反映:在使用特定工具时遇到无法生成相应的txt标签的情况,请对ultralytics/data/converter.py文件中第416行代码进行查看与分析。建议对ultralytics/data/converter.py文件中第416行代码进行检查与修改:若实际获取到的图片数据不符合预期,则可能导致标签生成异常。请确认该工具中所处理的图片数据格式(如PNG、JPEG等)是否与实际需求一致;如有差异,请及时更新相关配置参数以解决此问题。

执行完成后,在位于data/labels目录中会创建train和val这两个文件夹,并预处理完成的标签数据集会被生成。

三、配置文件设置
3.1 新建my-data8-obb.yaml
ultralytics\ultralytics\cfg\datasets路径下,创建my-data8-obb.yaml:
path: D:/study/cnn/yolo/ultralytics/data # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
# Classes for DOTA 1.0
names:
0: zebracrossing
3.2 修改yolov8-obb.yaml
ultralytics\ultralytics\cfg\models\v8路径下,修改yolov8-obb.yaml:

四、训练
4.1 下载预训练权重
在YOLOv8 github上下载预训练权重:

4.2 训练
步骤一:优化ultralytics官方配置文件中训练设置(基于实际需求调整)
步骤二:运行以下代码块:
from ultralytics import YOLO
# Load a model
model = YOLO('weights/yolov8n-obb.pt') # load a pretrained model (recommended for training)
# Train the model
results = model.train(data='D:/study/cnn/yolo/ultralytics/ultralytics/cfg/datasets/my-data8-obb.yaml', epochs=100, imgsz=640)

五、验证
from ultralytics import YOLO
def main():
model = YOLO(r'runs/obb/train/weights/best.pt')
model.val(data='dota8-obb.yaml', imgsz=1024, batch=4, workers=4)
if __name__ == '__main__':
main()

六、推理
from ultralytics import YOLO
model = YOLO('D:/study/cnn/yolo/ultralytics/runs/obb/train5/weights/best.pt')
results = model('D:/study/cnn/yolo/ultralytics/data/images/train/1.png', save=True)
print(results[0].obb.xywhr[:,-1]*180/3.1415)


全部评论 (0)
还没有任何评论哟~
