Advertisement

PCL:实现SPIN 估计(附完整源码)

阅读量:

PCL(公共点云库)中实现了一个基于SPIN(Spin Image Estimation)的方法来估计表面法线和稀疏直方图。该方法通过构建Kd树来进行高效的搜索,并对输入点云进行预处理以计算法线向量和平移不变的空间直方图(Spin Image)。文章详细描述了SPIN估计的具体实现过程,并展示了如何通过修改搜索半径和其他参数来调整估算结果。
此外,文章还介绍了基于强度信息的SPIN估计方法(IntensitySpinEstimation),该方法不仅考虑空间信息还包括强度特征,并对密集点云数据进行了验证。通过修改距离 bins 和强度 bins 的数量,可以灵活控制估算结果的粒度。文章通过多个测试案例展示了不同条件下SPIN估计的结果,并验证了其正确性与预期值的一致性。

PCL:实现SPIN 估计

复制代码
    #include <pcl/test/gtest.h>
    #include <pcl/point_cloud.h>
    #include <pcl/features/normal_3d.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/features/spin_image.h>
    #include <pcl/features/intensity_spin.h>
    
    using namespace pcl;
    using namespace pcl::io;
    
    using KdTreePtr = search::KdTree<PointXYZ>::Ptr;
    
    PointCloud<PointXYZ> cloud;
    pcl::Indices indices;
    KdTreePtr tree;
    
    //
    TEST (PCL, SpinImageEstimation)
    {
      // Estimate normals first
      double mr = 0.002;
      NormalEstimation<PointXYZ, Normal> n;
      PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
      // set parameters
      n.setInputCloud (cloud.makeShared ());
      pcl::IndicesPtr indicesptr (new pcl::Indices (indices));
      n.setIndices (indicesptr);
      n.setSearchMethod (tree);
      n.setRadiusSearch (20 * mr);
      n.compute (*normals);
    
      EXPECT_NEAR ((*normals)[103].normal_x, 0.36683175, 1e-4);
      EXPECT_NEAR ((*normals)[103].normal_y, -0.44696972, 1e-4);
      EXPECT_NEAR ((*normals)[103].normal_z, -0.81587529, 1e-4);
      EXPECT_NEAR ((*normals)[200].normal_x, -0.71414840, 1e-4);
      EXPECT_NEAR ((*normals)[200].normal_y, -0.06002361, 1e-4);
      EXPECT_NEAR ((*normals)[200].normal_z, -0.69741613, 1e-4);
    
      EXPECT_NEAR ((*normals)[140].normal_x, -0.45109111, 1e-4);
      EXPECT_NEAR ((*normals)[140].normal_y, -0.19499126, 1e-4);
      EXPECT_NEAR ((*normals)[140].normal_z, -0.87091631, 1e-4);
    
      using SpinImage = Histogram<153>;
      SpinImageEstimation<PointXYZ, Normal, SpinImage> spin_est(8, 0.5, 16);
      // set parameters
      //spin_est.setInputWithNormals (cloud.makeShared (), normals);
      spin_est.setInputCloud (cloud.makeShared ());
      spin_est.setInputNormals (normals);
      spin_est.setIndices (indicesptr);
      spin_est.setSearchMethod (tree);
      spin_est.setRadiusSearch (40*mr);
    
      // Object
      PointCloud<SpinImage>::Ptr spin_images (new PointCloud<SpinImage> ());
    
    
      // radial SI
      spin_est.setRadialStructure();
    
      // estimate
      spin_est.compute (*spin_images);
      EXPECT_EQ (spin_images->size (), indices.size ());
    
      EXPECT_NEAR ((*spin_images)[100].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[24], 0.00233226, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[48], 8.48662e-005, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[60], 0.0266387, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[96], 0.0414662, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[108], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[132], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[144], 0.0128513, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[24], 0.00932424, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[48], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[60], 0.0145733, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[96], 0.00034457, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[108], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[132], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[144], 0.0121195, 1e-4);
    
      // radial SI, angular spin-images
      spin_est.setAngularDomain ();
    
      // estimate
      spin_est.compute (*spin_images);
      EXPECT_EQ (spin_images->size (), indices.size ());
    
      EXPECT_NEAR ((*spin_images)[100].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[24], 0.132139, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[48], 0.908814, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[60], 0.63875, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[96], 0.550392, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[108], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[132], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[144], 0.257136, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[24], 0.230605, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[48], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[60], 0.764872, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[96], 1.02824, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[108], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[132], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[144], 0.293567, 1e-4);
    
      // rectangular SI
      spin_est.setRadialStructure (false);
      spin_est.setAngularDomain (false);
    
      // estimate
      spin_est.compute (*spin_images);
      EXPECT_EQ (spin_images->size (), indices.size ());
    
      EXPECT_NEAR ((*spin_images)[100].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[24], 0.000889345, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[48], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[60], 0.0489534, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[96], 0.0747141, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[108], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[132], 0.0173423, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[144], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[24], 0.0267132, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[48], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[60], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[96], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[108], 0.0209709, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[132], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[144], 0.029372, 1e-4);
    
      // rectangular SI, angular spin-images
      spin_est.setAngularDomain ();
    
      // estimate
      spin_est.compute (*spin_images);
      EXPECT_EQ (spin_images->size (), indices.size ());
    
      EXPECT_NEAR ((*spin_images)[100].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[24], 0.132139, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[48], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[60], 0.38800787925720215, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[96], 0.468881, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[108], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[132], 0.67901438474655151, 1e-4);
      EXPECT_NEAR ((*spin_images)[100].histogram[144], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[0], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[12], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[24], 0.143845, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[36], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[48], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[60], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[72], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[84], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[96], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[108], 0.706084, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[120], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[132], 0, 1e-4);
      EXPECT_NEAR ((*spin_images)[300].histogram[144], 0.272542, 1e-4);
    }
    
    //
    TEST (PCL, IntensitySpinEstimation)
    {
      // Generate a sample point cloud
      PointCloud<PointXYZI> cloud_xyzi;
      cloud_xyzi.height = 1;
      cloud_xyzi.is_dense = true;
    
      for (float x = -10.0f; x <= 10.0f; x += 1.0f)
      {
    for (float y = -10.0f; y <= 10.0f; y += 1.0f)
    {
      PointXYZI p;
      p.x = x;
      p.y = y;
      p.z = std::sqrt (400.0f - x * x - y * y);
      p.intensity = std::exp (-(powf (x - 3.0f, 2.0f) + powf (y + 2.0f, 2.0f)) / (2.0f * 25.0f)) + std::exp (-(powf (x + 5.0f, 2.0f) + powf (y - 5.0f, 2.0f))
                                                                                 / (2.0f * 4.0f));
    
      cloud_xyzi.push_back (p);
    }
      }
      cloud_xyzi.width = cloud_xyzi.size ();
    
      // Compute the intensity-domain spin features
      using IntensitySpin = Histogram<20>;
      IntensitySpinEstimation<PointXYZI, IntensitySpin> ispin_est;
      search::KdTree<PointXYZI>::Ptr treept3 (new search::KdTree<PointXYZI> (false));
      ispin_est.setSearchMethod (treept3);
      ispin_est.setRadiusSearch (10.0);
      ispin_est.setNrDistanceBins (4);
      ispin_est.setNrIntensityBins (5);
    
      ispin_est.setInputCloud (cloud_xyzi.makeShared ());
      PointCloud<IntensitySpin> ispin_output;
      ispin_est.compute (ispin_output);
    
      // Compare to independently verified values
      const IntensitySpin &ispin = ispin_output[220];
      const float correct_ispin_feature_values[20] = {2.4387f, 9.4737f, 21.3232f, 28.3025f, 22.5639f, 13.2426f, 35.7026f, 60.0755f,
                                                  66.9240f, 50.4225f, 42.7086f, 83.5818f, 105.4513f, 97.8454f, 67.3801f,
                                                  75.7127f, 119.4726f, 120.9649f, 93.4829f, 55.4045f};
      for (int i = 0; i < 20; ++i)
      {
    EXPECT_NEAR (ispin.histogram[i], correct_ispin_feature_values[i], 1e-4);
      }
    }
    
    /* ---[ */
    int
    main (int argc, char** argv)
    {
      if (argc < 2)
      {
    std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
    return (-1);
      }
    
      if (loadPCDFile<PointXYZ> (argv[1], cloud) < 0)
      {
    std::cerr << "Failed to read test file. Please download `bun0.pcd` and pass its path to the test." << std::endl;
    return (-1);
      }
    
      indices.resize (cloud.size ());
      for (std::size_t i = 0; i < indices.size (); ++i)
    indices[i] = static_cast<int> (i);
    
      tree.reset (new search::KdTree<PointXYZ> (false));
      tree->setInputCloud (cloud.makeShared ());
    
      testing::InitGoogleTest (&argc, argv);
      return (RUN_ALL_TESTS ());
    }
    /* ]--- */
    
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI助手

此篇文章乃是我个人的原创作品;未经博主允许不得擅自转载;这篇博客的详细内容可参考以下链接:

全部评论 (0)

还没有任何评论哟~