机器学习:使用KNN和决策树来预测和评估乳腺癌load_breast_cancer
发布时间
阅读量:
阅读量
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
cancer=load_breast_cancer()
x=cancer.data
y=cancer.target
x_train,x_test,y_train,y_test=train_test_split(x, y, random_state=10,test_size=0.2)
std=StandardScaler()
x_train=std.fit_transform(x_train)
x_test=std.transform(x_test)
#构建KNN模型和预测
from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier()
model.fit(x_train,y_train)
#KNN模型评估
from sklearn.metrics import classification_report
print("训练集的模型评估指标:",model.score(x_train, y_train))
y_train_predict = model.predict(x_train)
model_report1 = classification_report(y_train, y_train_predict)
print(model_report1)
print("测试集的模型评估指标:",model.score(x_test, y_test))
y_predict = model.predict(x_test)
model_report = classification_report(y_test, y_predict)
print(model_report)
from sklearn import tree# 导入决策树包
# 进行数据集分割
print("x_train.shape:", x_train.shape)
print("y_train.shape:", y_train.shape)
print("x_test.shape:", x_test.shape)
print("y_test.shape:", y_test.shape)
clf = tree.DecisionTreeClassifier() #加载决策树模型
## 训练决策树模型
clf.fit(x_train, y_train)
## 模型预测
predictions = clf.predict(x_test)
## 模型评估
from sklearn.metrics import accuracy_score # 导入准确率评价指标
print('精准预测评估:%s'% accuracy_score(y_test, predictions))
需要安装的包:
安装numpy模块:pip install numpy -i Simple Index
安装pandas模块:pip install pandas -i Simple Index
安装机器学习模块:
pip install scikit_learn -i Simple Index
全部评论 (0)
还没有任何评论哟~
