Contrastive Code Representation Learning
发布时间
阅读量:
阅读量
# 安装环境
安装nodejs
npm root -g # 输出默认路径
更改npm仓库路径
npm config set prefix "D:\repository\node\node_global" #存储路径
npm config set cache "D:\repository\node\node_cache" #缓存路径
在contrastive_code代码执行
npm install # 自动安装依赖
pip install -e "." # 安装python依赖
下载数据集;然后将 data 进行解压缩并提取到代码的根目录下。
论文阅读
代码阅读
入口程序
def pretrain(
run_name: str,
# Data
train_filepath: str = DEFAULT_CSNJS_TRAIN_FILEPATH,
spm_filepath: str = DEFAULT_SPM_UNIGRAM_FILEPATH,
num_workers=1,
limit_dataset_size=-1,
max_length=1024,
subword_regularization_alpha: float = 0,
program_mode="contrastive",
loss_mode="infonce", # infonce, mlm, or hybrid
min_alternatives=1,
#
# Model
resume_path: str = "",
encoder_type: str = "transformer",
lstm_project_mode: str = "hidden",
n_encoder_layers: int = 6,
d_model: int = 512, #rnn encode embedding size
#
# Optimization
num_epochs: int = 100, #迭代次数
save_every: int = 1,
batch_size: int = 256, # batch_size
lr: float = 8e-4, #学习率
weight_decay: float = 0, #L2正则化参数
adam_betas=(0.9, 0.98),
warmup_steps: int = 5000,
num_steps: int = 600000,
#
# Distributed
rank: int = -1,
dist_url: str = "env://",
dist_backend: str = "nccl",
#
# Computational
use_cuda: bool = True, #是否使用cuda
seed: int = 0, #种子
):
全部评论 (0)
还没有任何评论哟~
