tf计算矩阵维度_多维张量做tf.matmul

线性代数都学过二维矩阵的乘法,而tf.matmul还可以处理多维矩阵,比如
import tensorflow as tf
import numpy as np
a = tf.random.uniform([2, 1, 2, 3])
b = tf.random.uniform([1, 3, 3, 2])
c = tf.matmul(a, b)
c是什么呢?
先给出结论:无论多少维度的矩阵,在完成最后两维的矩阵乘法后,在不同维度上重复多次。
多维的 tf.matmul(a, b) 的维度有如下两个要求:
1、a沿轴-1展开所得的结果与b沿轴-2展开所得的结果应当相同。例如,在上述示例中数组[456789;987654;567894;456789;987654;567894;456789;987654;567894;456789;987654;567894]中的最后一个元素为...以及数组[...]中的第二个元素。
对于a和b的所有各个维度的值(除轴为-1和-2的情况外),在其任一给定维度中必须满足其值要么相等,要么其中至少一个为1。
比如,[3, 2, 3]维度的张量与[3, 3, 2]维度的张量做tf.matmul的例子:
In [84]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([3, 2, 3])
...: b = tf.random.uniform([3, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
...:
...:
Out[84]: TensorShape([3, 2, 2])
In [87]: tf.matmul(a[0],b[0])
Out[87]:
<tf.Tensor: id=374, shape=(2, 2), dtype=float32, numpy=
array([[1.4506222 , 1.323427 ],
[0.28268352, 0.2917934 ]], dtype=float32)>
In [88]: tf.matmul(a[1],b[1])
Out[88]:
<tf.Tensor: id=383, shape=(2, 2), dtype=float32, numpy=
array([[1.0278544 , 0.4219831 ],
[0.865297 , 0.87740964]], dtype=float32)>
In [89]: c
Out[89]:
<tf.Tensor: id=365, shape=(3, 2, 2), dtype=float32, numpy=
array([[[1.4506222 , 1.323427 ],
[0.28268352, 0.2917934 ]],
[[1.0278544 , 0.4219831 ],
[0.865297 , 0.8774096 ]],
[[0.5752927 , 0.13066964],
[0.5343988 , 0.2741483 ]]], dtype=float32)>
可以看到,[3, 2, 3]维度的张量与[3, 3, 2]维度的张量做tf.matmul,可以理解成:
第一步,在axis=1和2的维度上进行[2, 3]维与[3, 2]维张量间的二维矩阵乘法运算,并得到[2, 2]维的结果。
在第二部分中,在axis=0维度上依次选择a和b中的对应元素,并对这些元素执行第一步操作。完成这一系列操作后,将获得一个具有[3, 2, 2]维度的结果数组。
如果,a和b的axis=0维度对不上,会bug:
In [95]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 2, 3])
...: b = tf.random.uniform([3, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
...:
...:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-95-462c4976a35a> in <module>
3 a = tf.random.uniform([2, 2, 3])
4 b = tf.random.uniform([3, 3, 2])
----> 5 c = tf.matmul(a, b)
6 c.shape
7
D:SAnaconda3_v3libsite-packagestensorflow_corepythonutildispatch.py in wrapper(*args, **kwargs)
178 """Call target, and fall back on dispatchers if there is a TypeError."""
179 try:
--> 180 return target(*args, **kwargs)
181 except (TypeError, ValueError):
182 # Note: convert_to_eager_tensor currently raises a ValueError, not a
D:SAnaconda3_v3libsite-packagestensorflow_corepythonopsmath_ops.py in matmul(a, b, transpose_a, transpose_b, adjoint_a, adjoint_b, a_is_sparse, b_is_sparse, name)
2725 b = conj(b)
2726 adjoint_b = True
-> 2727 return batch_mat_mul_fn(a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)
2728
2729 # Neither matmul nor sparse_matmul support adjoint, so we conjugate
D:SAnaconda3_v3libsite-packagestensorflow_corepythonopsgen_math_ops.py in batch_mat_mul_v2(x, y, adj_x, adj_y, name)
1700 else:
1701 message = e.message
-> 1702 _six.raise_from(_core._status_to_exception(e.code, message), None)
1703 # Add nodes to the TensorFlow graph.
1704 if adj_x is None:
D:SAnaconda3_v3libsite-packagessix.py in raise_from(value, from_value)
InvalidArgumentError: In[0] and In[1] must have compatible batch dimensions: [2,2,3] vs. [3,3,2] [Op:BatchMatMulV2] name: MatMul/
但是当a和b中axis=0的值有一个是1,不会bug:
In [90]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([1, 2, 3])
...: b = tf.random.uniform([3, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
...:
...:
Out[90]: TensorShape([3, 2, 2])
In [91]: c
Out[91]:
<tf.Tensor: id=398, shape=(3, 2, 2), dtype=float32, numpy=
array([[[0.59542704, 0.60751694],
[0.19115494, 0.36344892]],
[[1.0542538 , 0.75257593],
[0.26940605, 0.24408351]],
[[1.1716111 , 0.4058628 ],
[0.09086016, 0.28043625]]], dtype=float32)>
In [92]: tf.matmul(a[0],b[0])
Out[92]:
<tf.Tensor: id=407, shape=(2, 2), dtype=float32, numpy=
array([[0.59542704, 0.60751694],
[0.19115494, 0.36344892]], dtype=float32)>
In [93]: tf.matmul(a[0],b[1])
Out[93]:
<tf.Tensor: id=416, shape=(2, 2), dtype=float32, numpy=
array([[1.0542538 , 0.7525759 ],
[0.26940605, 0.2440835 ]], dtype=float32)>
In [94]: tf.matmul(a[0],b[2])
Out[94]:
<tf.Tensor: id=425, shape=(2, 2), dtype=float32, numpy=
array([[1.1716112 , 0.4058628 ],
[0.09086016, 0.28043625]], dtype=float32)>
仍然遵循上述步骤:首先对最后两个维度进行乘法运算;接着依次构建结果矩阵或数组;值得注意的是由于矩阵a沿着轴0(即第一维)所有元素均为1这一特性;因此整个操作实际上等价于将矩阵b沿着轴0的所有元素与a轴0元素进行一一对应的操作(具体效果可以通过查看代码和运行结果来验证)。
所以得到三维上的结论:
先做最后两维的矩阵的乘法,再在不同维度重复多次。
多维的 tf.matmul(a, b) 的维度有如下两个要求:
1、a的axis=2的值(只可意会)和b的axis=1的值需要相等。
2、a和b的axis=0的值需要“相等”或者“有一个是1”。
再看更高维度,比如四维的情况。
In [96]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([2, 3, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
...:
...:
Out[96]: TensorShape([2, 3, 2, 2])
In [97]: c
Out[97]:
<tf.Tensor: id=454, shape=(2, 3, 2, 2), dtype=float32, numpy=
array([[[[1.0685383 , 1.9015994 ],
[1.1457413 , 1.5246255 ]],
[[0.953201 , 1.5544493 ],
[0.7639411 , 1.4360913 ]],
[[0.67427766, 0.49847895],
[0.499685 , 0.39281937]]],
[[[0.42752475, 0.7453967 ],
[0.3735991 , 0.74812794]],
[[0.54442215, 0.6510606 ],
[0.6632798 , 0.38497943]],
[[0.3459217 , 0.96300673],
[0.45035997, 0.90772474]]]], dtype=float32)>
In [98]: tf.matmul(a[0],b[0])
Out[98]:
<tf.Tensor: id=463, shape=(3, 2, 2), dtype=float32, numpy=
array([[[1.0685383 , 1.9015994 ],
[1.1457413 , 1.5246255 ]],
[[0.953201 , 1.5544493 ],
[0.7639411 , 1.4360913 ]],
[[0.67427766, 0.49847895],
[0.499685 , 0.39281937]]], dtype=float32)>
In [99]: tf.matmul(a[1],b[1])
Out[99]:
<tf.Tensor: id=472, shape=(3, 2, 2), dtype=float32, numpy=
array([[[0.42752475, 0.7453967 ],
[0.3735991 , 0.74812794]],
[[0.54442215, 0.6510606 ],
[0.6632798 , 0.38497943]],
[[0.3459217 , 0.96300673],
[0.45035997, 0.90772474]]], dtype=float32)>
在三维情况下具有相同的效果,在每一层都按照顺序执行tf.matmul操作,并且都能够转换为最终两个维度上的二维矩阵乘法运算。
同理,axis=0维度位置的值,有一个是1,也行:
In [100]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([1, 3, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
...:
...:
Out[100]: TensorShape([2, 3, 2, 2])
不再赘述
无论多维矩阵都是先对最后两个维度进行相乘运算,在各个维度上反复进行操作以完成整体计算。
多维的 tf.matmul(a, b) 的维度有如下两个要求:
1、a的axis=-1的值(只可意会)和b的axis=-2的值需要相等。
2、由a与b所组成的结构中的各个维度(除轴为-1、-2的位置外),在其各个轴上的值必须满足以下两个条件:一是所有轴上的数值相等;二是存在至少一个轴其数值为1。
另外给出一些维度数量对不上的例子,供意会:
In [105]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([1, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
Out[105]: TensorShape([2, 1, 2, 2])
In [106]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([7, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
Out[106]: TensorShape([2, 7, 2, 2])
In [107]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([7, 9, 3, 2])
...: c = tf.matmul(a, b)
...: c.shape
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-107-ff6e40117cf7> in <module>
3 a = tf.random.uniform([2, 1, 2, 3])
4 b = tf.random.uniform([7, 9, 3, 2])
----> 5 c = tf.matmul(a, b)
6 c.shape
D:SAnaconda3_v3libsite-packagestensorflow_corepythonutildispatch.py in wrapper(*args, **kwargs)
178 """Call target, and fall back on dispatchers if there is a TypeError."""
179 try:
--> 180 return target(*args, **kwargs)
181 except (TypeError, ValueError):
182 # Note: convert_to_eager_tensor currently raises a ValueError, not a
D:SAnaconda3_v3libsite-packagestensorflow_corepythonopsmath_ops.py in matmul(a, b, transpose_a, transpose_b, adjoint_a, adjoint_b, a_is_sparse, b_is_sparse, name)
2725 b = conj(b)
2726 adjoint_b = True
-> 2727 return batch_mat_mul_fn(a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)
2728
2729 # Neither matmul nor sparse_matmul support adjoint, so we conjugate
D:SAnaconda3_v3libsite-packagestensorflow_corepythonopsgen_math_ops.py in batch_mat_mul_v2(x, y, adj_x, adj_y, name)
1700 else:
1701 message = e.message
-> 1702 _six.raise_from(_core._status_to_exception(e.code, message), None)
1703 # Add nodes to the TensorFlow graph.
1704 if adj_x is None:
D:SAnaconda3_v3libsite-packagessix.py in raise_from(value, from_value)
InvalidArgumentError: In[0] and In[1] must have compatible batch dimensions: [2,1,2,3] vs. [7,9,3,2] [Op:BatchMatMulV2] name: MatMul/
a和b的维度对不上也可以用,规则是“向右看齐”。
后面讨论多维 tf.matmul(a, b, transpose_b=True) 的情况:
In [111]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([2, 1, 2, 3])
...: c = tf.matmul(a, b, transpose_b=True)
...: c.shape
Out[111]: TensorShape([2, 1, 2, 2])
In [112]: import tensorflow as tf
...: import numpy as np
...: a = tf.random.uniform([2, 1, 2, 3])
...: b = tf.random.uniform([1, 5, 2, 3])
...: c = tf.matmul(a, b, transpose_b=True)
...: c.shape
Out[112]: TensorShape([2, 5, 2, 2])
transpose只是对最后两维做了转置,用于二维矩阵乘法能对的上。
-----------------------------------------------------------
感觉有用请点赞~谢谢~
