Advertisement

【无人机设计与控制】使用 Simulink 进行四轴飞行器/四旋翼飞行器仿真

阅读量:

摘要

本文介绍了如何使用Simulink进行四轴飞行器(四旋翼)仿真,通过建立详细的动力学模型和控制系统,实现对四旋翼无人机的姿态、位置和路径控制的精确仿真。该仿真环境不仅能够用于研究无人机的飞行控制性能,还可用于开发和验证新的控制算法。

理论

四轴飞行器是一种多旋翼飞行器,主要通过四个旋翼的推力和扭矩实现姿态和位移控制。其动力学模型由牛顿-欧拉方程描述,涵盖了飞行器在三维空间中的运动。仿真模型通常包括以下几个关键部分:

1. 动力学模型*:

定义了四轴飞行器的质量、惯性、推力和阻力特性,通过微分方程描述其在三维空间中的动态行为。

2. 控制系统:

采用如PID控制、LQR控制等经典控制算法,实现对飞行器的姿态和位置的精确控制。

3. 仿真环境:

利用Simulink建立飞行器的仿真模型,集成动力学方程和控制算法,进行系统级的仿真和测试。

实验结果

通过在Simulink中建立四轴飞行器的仿真模型,实验展示了飞行器在不同控制策略下的飞行表现。仿真结果表明,在设定的路径跟踪任务中,四轴飞行器能够稳定地跟踪目标轨迹,保持预定的姿态和位置。

1. 姿态控制:

在PID控制器的作用下,四轴飞行器能够快速稳定到所需的姿态角度,并有效抑制外界扰动带来的影响。

2. 路径跟踪:

四轴飞行器在给定的路径跟踪任务中,能够精确跟踪目标轨迹,仿真中表现出较小的跟踪误差和快速的响应时间。

3. 动态响应:

通过调整控制参数,可以观察到飞行器在不同条件下的动态响应,包括响应速度、过冲和稳定性等指标的变化。

部分代码

复制代码
 % Load the quadrotor model

    
 load_system('quadrotor');
    
  
    
 % Set simulation parameters
    
 simTime = 15;  % Simulation time in seconds
    
 stepSize = 0.01;  % Simulation step size
    
  
    
 % Run the simulation
    
 simOut = sim('quadrotor', 'SimulationMode', 'normal', ...
    
              'StopTime', num2str(simTime), 'FixedStep', num2str(stepSize));
    
  
    
 % Extract simulation results
    
 time = simOut.tout;
    
 position = simOut.yout{1}.Values.Position;
    
 attitude = simOut.yout{1}.Values.Attitude;
    
  
    
 % Plot results
    
 figure;
    
 subplot(2,1,1);
    
 plot(time, position.Data);
    
 title('Quadrotor Position');
    
 xlabel('Time (s)');
    
 ylabel('Position (m)');
    
 legend('X', 'Y', 'Z');
    
  
    
 subplot(2,1,2);
    
 plot(time, attitude.Data);
    
 title('Quadrotor Attitude');
    
 xlabel('Time (s)');
    
 ylabel('Angle (rad)');
    
 legend('Roll', 'Pitch', 'Yaw');
    
    
    
    
    AI写代码

参考文献

Liu, Y. (2024). Advanced Control Techniques for Quadrotors. Elsevier.

Brown, J. (2024). Flight Dynamics and Control of Quadrotor UAVs. McGraw-Hill.

全部评论 (0)

还没有任何评论哟~