[机器学习入门] 李宏毅机器学习笔记-13 (Semi-supervised Learning ;半监督学习)
发布时间
阅读量:
阅读量
[机器学习基础] 李宏毅机器学习笔记-13 (半监督式学习方法;一种结合少量标记数据与大量未标记数据的学习技术)
| VIDEO |
|---|
Introduction

Why semi-supervised learning helps?

Semi-supervised Learning for Generative Model
Supervised Generative Model VS Semi-supervised Generative Model


Step

Why?

Low-density Separation

Self-training


Entropy-based Regularization

Outlook: Semi-supervised SVM

Smoothness Assumption
核心思想:近朱者赤,近墨者黑


Classify astronomy vs. travel articles


更多的数据连在一起,很难分类,那么如何做呢?
Cluster(群集 ) and then Label

这种方法 may not always make sense, especially when the category is unclear.
However, determining whether x1 and x2 are close in a high-density area requires examining if they are connected by a path of high-density regions.
Additionally, another approach involves assessing connectivity within the same density region through alternative metrics.
Graph-based Approach

Graph Construction


怎样在Graph 中定量地表示平滑度

将该式子整理一下,换个形式

如此,让smoothness 影响Loss,as a regularization term

smoothness不一定要放在output上,放到任何一层都可以。
Better Representation
去蕪存菁,化繁為簡
Looking for Better Representation

全部评论 (0)
还没有任何评论哟~
