opencv 识别长方形_OpenCV 圆与矩形识别的方法
最近参与的一个项目应用了图像识别技术。由于之前完全没有接触过OpenCV工具,在多方学习与实践中逐步掌握了基础操作方法。通过查阅各种教程资料以及实践操作,在经过一段时间的学习努力后终于基本掌握了相关知识。
整个具体的流程大致上是先获取原始图像数据,在此基础上依次执行以下操作:首先将原始图像转换为二值化灰度图(cvtColor),随后运用高斯滤波器(GaussianBlur)对图片进行降噪处理;接着通过OpenCV中的cvFindContours函数来进行轮廓检测;最后完成形状分析过程(shape detection)。
大多数教程很专业,各种参数分析看不懂,经过各种搜索终于是搞懂了。
识别圆
在识别圆方面,OpenCV有内置的方法:霍夫圆变化:
HoughCircles(edges, circles, CV_HOUGH_GRADIENT, 1.5, 10, 200, 100, 0, 0);
参数分析:
edges:灰度图像
circles: std::vector circles;数组,用来存储圆的坐标信息
Hough梯度变换:该Hough变换类型仅支持这一种形式(对应于21HT算法),如[Yuen03]所述,默认采用此方法
1.5:累加器图像的分辨率,1的时候是与获取到的图像相同,1.5就是1.5倍
10:圆与圆的最小距离,两个圆心距离如果在范围内则被认定为1个圆
200:100-200两个参数选就够了
100:预设为100值。当数值较小时(即数值较低时),圆的识别精度会有所下降。当实际存在的圆形数量较多时(比如存在多个实际圆形导致部分边缘被误判为圆形),可能会出现部分边缘被误判为圆形的情况。
最后两个参数分别是识别 圆的最小,最大的面积。
矩形识别
矩形识别并没有内置方法,需要自己手写。
最主要的方法是二值化。通过二值化来调节识别的强度。
cvThreshold(tgray, gray, 75, 250, CV_THRESH_BINARY);
参数分析:
src:原始数组 (单通道 , 8-bit of 32-bit 浮点数)。
dst:输出数组,必须与 src 的类型一致,或者为 8-bit。
threshold:阈值
max_value:使用 CV_THRESH_BINARY 和 CV_THRESH_BINARY_INV 的最大值。
threshold_type:阈值类型
设阈值类型为二元阈值:当src(x,y)大于阈值时,dst(x,y)设为最大值;否则, dst(x,y)置零;
当src(x,y)超过threshold时,则dst(x,y)被赋值为0;否则,则被赋值为max_value。
threshold_type=CV_THRESH_TRUNC: if src(x,y) > threshold, set dst(x,y) to the maximum value; otherwise, retain the original intensity of src(x,y).
当threshold_type设置为CV_thresh_tozero时, 如果源坐标点src(x y)的值大于阈值, 则将目标坐标点dst(x y)赋值为源坐标点的值; 否则则将目标坐标点dst(x y)赋值为零.
当源图像像素值大于阈值时(threshold_type=CV_THRESH_TOZERO_INV),目标图像像素置零;否则不进行处理。
效果图如下:
在矩形识别里面的二值化图:
圆识别:
源码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#pragma comment(lib,"ws2_32.lib")
#include
using namespace cv;
//
//函数功能:用向量来做COSα=两向量之积/两向量模的乘积求两条线段夹角
//输入: 线段3个点坐标pt1,pt2,pt0,最后一个参数为公共点
//输出: 线段夹角,单位为角度
//
double angle(CvPoint* pt1, CvPoint* pt2, CvPoint* pt0)
{
double dx1 = pt1->x - pt0->x;
double dy1 = pt1->y - pt0->y;
double dx2 = pt2->x - pt0->x;
double dy2 = pt2->y - pt0->y;
double angle_line = (dx1dx2 + dy1 * dy2) / sqrt((dx1dx1 + dy1 * dy1)(dx2dx2 + dy2 * dy2) + 1e-10);//余弦值
return acos(angle_line) * 180 / 3.141592653;
}
//
//函数功能:采用多边形检测,通过约束条件寻找矩形
//输入: img 原图像
// storage 存储
// minarea,maxarea 检测矩形的最小/最大面积
// minangle,maxangle 检测矩形边夹角范围,单位为角度
//输出: 矩形序列
//
CvSeq* squareFinder(IplImage* image, CvMemStorage* storage, int minimumAndMaximumAreaRange[2], int minimumAndMaximumAngleRange[2], int(&pointsOfInterest)[30])
{
CvSeq* contours;//边缘
int N = 6; //阈值分级
CvSize sz = cvSize(img->width & -2, img->height & -2);
IplImage* timg = cvCloneImage(img);//拷贝一次img
IplImage* gray = cvCreateImage(sz, 8, 1); //img灰度图
IplImage* pyr = cv::createImage(cv::size(sz.width / 2, sz.height / 2), 8, 3); //金字塔滤波器的3通道中间变量
IplImage* tgray = cvCreateImage(sz, 8, 1); ;
CvSeq* result;
double s, t;
int sk = 0;
CvSeq* squares = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvPoint), storage);
cvSetImageROI(timg, cvRect(0, 0, sz.width, sz.height));
//金字塔滤波
cvPyrDown(timg, pyr, 7);
cvPyrUp(pyr, timg, 7);
//在3个通道中寻找矩形
for (int c = 0; c < 3; c++) //对3个通道分别进行处理
{
cvSetImageCOI(timg, c + 1);
cvCopy(timg, tgray, 0); //依次将BGR通道送入tgray
for (int l = 0; l < N; l++)
{
//不同阈值下二值化
cvThreshold(tgray, gray, 75, 250, CV_THRESH_BINARY);
cvShowImage("111", gray);
该算法用于从灰度图像中提取轮廓信息并存储
while (contours)
{ //多边形逼近
计算结果为result = cvApproxPoly(contours, CvPointStorage::DefaultSize, storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*二十分之一, 0);
//如果是凸四边形并且面积在范围内
当结果总共有4个元素,并且其轮廓面积的绝对值大于最小面积且小于最大面积,并且满足凸性检查时
{
s = 0;
//判断每一条边
for (int i = 0; i < 5; i++)
{
if (i >= 2)
{ //角度
t等于绝对值函数作用于三个点计算的角度
s = s > t ? s : t;
}
}
//这里的S为直角判定条件 单位为角度
if (s > minangle && s < maxangle)
{
for (int i = 0; i < 4; i++)
cvSeqPush(squares, (CvPoint*)cvGetSeqElem(result, i));
CvRect rect = cvBoundingRect(contours, 1); // 获取矩形边界框
CvPoint p1;
p1 = cvPoint(rect.x + rect.width / 2, rect.y + rect.height / 2); //矩形中心坐标
std::cout << "X:" << p1.x << "Y:" << p1.y << std::endl;
}
}
contours = contours->h_next;
}
}
std::cout << "圆的数量是"<
temp[26] = sk;
sk = 0;
}
cvReleaseImage(&gray);
cvReleaseImage(&pyr);
cvReleaseImage(&tgray);
cvReleaseImage(&timg);
return squares;
}
//
//函数功能:画出所有矩形
//输入: img 原图像
// squares 矩形序列
// wndname 窗口名称
//输出: 图像中标记矩形
//
void drawSquares(IplImage* img, CvSeq* squares, const char* wndname)
{
CvSeqReader reader;
IplImage* cpy = cvCloneImage(img);
CvPoint pt[4];
int i;
cvStartReadSeq(squares, &reader, 0);
for (i = 0; i < squares->total; i += 4)
{
CvPoint* rect = pt;
int count = 4;
memcpy(pt, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
memcpy(pt + 1, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
memcpy(pt + 2, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
memcpy(pt + 3, reader.ptr, squares->elem_size);
CV_NEXT_SEQ_ELEM(squares->elem_size, reader);
//cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
cvPolyLine(cpy, &rect, &count, 1, 1, CV_RGB(rand() & 255, rand() & 255, rand() & 255), 1, CV_AA, 0);//彩色绘制
}
cvShowImage("22", cpy);
cvReleaseImage(&cpy);
}
void SendMessageOne()
{
//开起摄像头
VideoCapture capture;
capture.open(0);
Mat edges; //定义转化的灰度图
if (!capture.isOpened())
namedWindow("【效果图】", CV_WINDOW_NORMAL);
const char* winn = "1111";
if (!capture.isOpened())
//namedWindow(winn, CV_WINDOW_NORMAL);
CvMemStorage* storage = 0;
CvMemStorage* storage = 0;
storage = cvCreateMemStorage(0);
while (1)
{
int Y=0, J=0;
Mat frame;
capture >> frame;
IplImage img0 = frame;
//drawSquares(&img0, findSquares4(&img0, storage, 100, 2000, 80, 100, a), winn);
//cvClearMemStorage(storage); //清空存储
Mat E = frame(Range(1, 320), Range(1, 240));
cvtColor(frame, edges, CV_BGR2GRAY);
//高斯滤波
GaussianBlur(edges, edges, Size(7, 7), 2, 2);
std::vector circles;//存储每个圆的位置信息
//霍夫圆
HoughCircles(edges, circles, CV_HOUGH_GRADIENT, 1.5, 10, 100, 100, 0, 50);
for (size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
//std::cout << "圆的X是" << circles[i][0] << "圆的Y是" << circles[i][1] << std:: endl;
//绘制圆轮廓
circle(frame, center, radius, Scalar(155, 50, 255), 3, 8, 0);
int R = frame.at(cvRound(circles[i][1]), cvRound(circles[i][0]))[2];//R
int G = frame.at(cvRound(circles[i][1]), cvRound(circles[i][0]))[1];//G
int B = frame.at(cvRound(circles[i][1]), cvRound(circles[i][0]))[0];//B
int num = R + G + B;
std::cout << "圆心颜色是" << num << std::endl;
}
imshow("【效果图】", frame);
waitKey(30);
}
}
int main()
{
std::thread *a = new std::thread(SendMessageOne);
a->join();
return 0;
}
综上所述,本文的主要内容已经介绍完毕。我们相信这些内容能够为您提供学习上的指导与参考。我们诚挚地期待读者能访问并关注我们的平台。
