如何yolov8训练使用——电塔电线电线杆缺陷检测数据集 10000张 带标注 voc yolo 电线杆子缺陷数据集输电线塔缺陷数据集

都有对应标注,格式VOC (XML),选配Y0L0(TXT) .
label| pic_ num| box_ num
绑扎不规范: (3717, 14510)
并线线夹保护壳缺失: (3317, 11285)
耐张线夹保护壳缺失: (3748, 16148)
横杆腐蚀: (987, 1556)
塔头损坏: (972, 1021)
total: (9838, 44520)


电力电塔电线缺陷检测数据集统计表
标签名称 图片数量 边框数量
绑扎不规范 (绑扎不规范) 3717 14510
并线线夹保护壳缺失 (并线线夹保护壳缺失) 3317 11285
耐张线夹保护壳缺失 (耐张线夹保护壳缺失) 3748 16148
横杆腐蚀 (横杆腐蚀) 987 1556
塔头损坏 (塔头损坏) 972 1021
总计 9838 44520
项目结构
深色版本
power_line_defect_detection/
├── dataset/
│ ├── images/
│ │ └── *.jpg
│ ├── labels_voc/
│ │ └── *.xml
│ ├── labels_yolo/
│ │ └── *.txt
├── models/
│ └── yolov8/
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
│ ├── convert_voc_to_yolo.py
├── weights/
│ └── best_model.pt
├── requirements.txt
└── README.md
- 安装依赖
首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:
深色版本
torch
torchvision
numpy
pandas
matplotlib
tqdm
pyyaml
opencv-python
ultralytics
lxml
然后,使用以下命令安装依赖:
bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:
深色版本
dataset/
├── images/
│ └── *.jpg
├── labels_voc/
│ └── *.xml
├── labels_yolo/
│ └── *.txt
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,标签文件是VOC格式的.xml文件和YOLO格式的.txt文件。
- 数据集转换工具
为了方便使用YOLOv8模型,我们需要将VOC格式的标注文件转换为YOLO格式。可以使用以下脚本进行转换。
3.1 src/convert_voc_to_yolo.py
python
深色版本
import os
import xml.etree.ElementTree as ET
import shutil
def convert_voc_to_yolo(voc_dir, yolo_dir, class_names, image_size=(640, 640)):
os.makedirs(yolo_dir, exist_ok=True)
for xml_file in os.listdir(voc_dir):
if not xml_file.endswith('.xml'):
continue
tree = ET.parse(os.path.join(voc_dir, xml_file))
root = tree.getroot()
image_width = int(root.find('size/width').text)
image_height = int(root.find('size/height').text)
yolo_file = os.path.join(yolo_dir, xml_file.replace('.xml', '.txt'))
with open(yolo_file, 'w') as f:
for obj in root.findall('object'):
class_name = obj.find('name').text
if class_name not in class_names:
continue
class_id = class_names.index(class_name)
bndbox = obj.find('bndbox')
xmin = int(bndbox.find('xmin').text)
ymin = int(bndbox.find('ymin').text)
xmax = int(bndbox.find('xmax').text)
ymax = int(bndbox.find('ymax').text)
x_center = (xmin + xmax) / 2.0 / image_width
y_center = (ymin + ymax) / 2.0 / image_height
width = (xmax - xmin) / image_width
height = (ymax - ymin) / image_height
f.write(f"{class_id} {x_center} {y_center} {width} {height}\n")
if name == “main ”:
voc_dir = “dataset/labels_voc”
yolo_dir = “dataset/labels_yolo”
class_names = [
“绑扎不规范”, “并线线夹保护壳缺失”, “耐张线夹保护壳缺失”, “横杆腐蚀”, “塔头损坏”
]
convert_voc_to_yolo(voc_dir, yolo_dir, class_names)
4. 数据集配置
创建一个数据集类,用于加载和预处理数据。
4.1 src/utils.py
python
深色版本
import os
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
class PowerLineDefectDetectionDataset(Dataset):
def init(self, image_dir, label_dir, transform=None):
self.image_dir = image_dir
self.label_dir = label_dir
self.transform = transform
self.image_files = os.listdir(image_dir)
self.label_files = os.listdir(label_dir)
def __len__(self):
return len(self.image_files)
def __getitem__(self, index):
img_path = os.path.join(self.image_dir, self.image_files[index])
label_path = os.path.join(self.label_dir, self.image_files[index].replace('.jpg', '.txt'))
image = Image.open(img_path).convert("RGB")
if os.path.exists(label_path):
with open(label_path, 'r') as f:
labels = f.readlines()
labels = [line.strip().split() for line in labels]
labels = [[int(label[0])] + list(map(float, label[1:])) for label in labels]
else:
labels = []
if self.transform:
image = self.transform(image)
return image, labels
def get_data_loaders(image_dir, label_dir, batch_size=16, num_workers=4):
transform = transforms.Compose([
transforms.Resize((640, 640)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
dataset = PowerLineDefectDetectionDataset(image_dir, label_dir, transform=transform)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_loader, val_loader
- 模型定义
使用YOLOv8模型进行检测任务。这里我们使用预训练的YOLOv8模型,并对其进行微调。
5.1 src/train.py
python
深色版本
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from ultralytics import YOLO
from src.utils import get_data_loaders
import torch.nn.functional as F
def train_model(image_dir, label_dir, epochs=100, batch_size=16, learning_rate=1e-4):
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)
model = YOLO('yolov8n.pt') # Load a pretrained YOLOv8 model
model = model.to(device)
train_loader, val_loader = get_data_loaders(image_dir, label_dir, batch_size=batch_size)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = torch.nn.MSELoss()
writer = SummaryWriter()
for epoch in range(epochs):
model.train()
running_loss = 0.0
for images, labels in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):
images = images.to(device)
labels = [torch.tensor(label, dtype=torch.float32).to(device) for label in labels]
optimizer.zero_grad()
outputs = model(images)
loss = 0.0
for i in range(len(labels)):
if len(labels[i]) > 0:
pred = outputs[i, :, :, :5 * len(labels[i])]
pred = pred.permute(2, 0, 1).reshape(-1, 5)
target = labels[i][:, 1:]
loss += criterion(pred, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_loss = running_loss / len(train_loader)
writer.add_scalar('Training Loss', train_loss, epoch)
model.eval()
running_val_loss = 0.0
with torch.no_grad():
for images, labels in val_loader:
images = images.to(device)
labels = [torch.tensor(label, dtype=torch.float32).to(device) for label in labels]
outputs = model(images)
loss = 0.0
for i in range(len(labels)):
if len(labels[i]) > 0:
pred = outputs[i, :, :, :5 * len(labels[i])]
pred = pred.permute(2, 0, 1).reshape(-1, 5)
target = labels[i][:, 1:]
loss += criterion(pred, target)
running_val_loss += loss.item()
val_loss = running_val_loss / len(val_loader)
writer.add_scalar('Validation Loss', val_loss, epoch)
print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
model.save("weights/best_model.pt")
writer.close()
if name == “main ”:
image_dir = “dataset/images”
label_dir = “dataset/labels_yolo”
train_model(image_dir, label_dir)
6. 模型评估
训练完成后,可以通过验证集和测试集来评估模型的性能。示例如下:
6.1 src/predict.py
python
深色版本
import torch
import matplotlib.pyplot as plt
from ultralytics import YOLO
from src.utils import get_data_loaders
import numpy as np
def predict_and_plot(image_dir, label_dir, model_path, num_samples=5):
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)
model = YOLO(model_path)
model = model.to(device)
model.eval()
_, val_loader = get_data_loaders(image_dir, label_dir)
fig, axes = plt.subplots(num_samples, 2, figsize=(10, 5 * num_samples))
with torch.no_grad():
for i, (images, labels) in enumerate(val_loader):
if i >= num_samples:
break
images = images.to(device)
labels = [torch.tensor(label, dtype=torch.float32).to(device) for label in labels]
outputs = model(images)
outputs = outputs.cpu().numpy()
images = images.cpu().numpy().transpose((0, 2, 3, 1))
labels = [label.cpu().numpy() for label in labels]
for j in range(len(images)):
ax = axes[j] if num_samples > 1 else axes
ax[0].imshow(images[j])
ax[0].set_title(f"True: {labels[j]}")
ax[0].axis('off')
ax[1].imshow(images[j])
ax[1].set_title(f"Predicted: {outputs[j]}")
ax[1].axis('off')
plt.tight_layout()
plt.show()
if name == “main ”:
image_dir = “dataset/images”
label_dir = “dataset/labels_yolo”
model_path = “weights/best_model.pt”
predict_and_plot(image_dir, label_dir, model_path)
7. 运行项目
确保你的数据集已经放在相应的文件夹中。
运行转换脚本将VOC格式的标注文件转换为YOLO格式:
bash
深色版本
python src/convert_voc_to_yolo.py
在项目根目录下运行以下命令启动训练:
bash
深色版本
python src/train.py
训练完成后,运行以下命令进行评估和可视化:
bash
深色版本
python src/predict.py
8. 功能说明
数据集转换:convert_voc_to_yolo.py脚本用于将VOC格式的标注文件转换为YOLO格式。
训练模型:train.py脚本用于训练YOLOv8模型,使用均方误差损失函数和Adam优化器。
评估模型:predict.py脚本用于评估模型性能,并可视化输入图像、真实标签和预测结果。
9. 详细注释
convert_voc_to_yolo.py
数据集转换:将VOC格式的标注文件转换为YOLO格式。
utils.py
数据集类:定义了一个PowerLineDefectDetectionDataset类,用于加载和预处理数据。
数据加载器:定义了一个get_data_loaders函数,用于创建训练和验证数据加载器。
train.py
训练函数:定义了一个train_model函数,用于训练YOLOv8模型。
训练过程:在每个epoch中,模型在训练集上进行前向传播和反向传播,并在验证集上进行评估。
predict.py
预测和可视化:定义了一个predict_and_plot函数,用于在验证集上进行预测,并可视化输入图像、真实标签和预测结果
