ubuntu14.04 安装anaconda+pycharm+cuda+cudnn+theano0.90+keras2.0.2+tensorflow1.1.0
Ubuntu初始环境设置
系统升级
sudo apt update
sudo apt upgrade
安装python基础开发包
sudo apt install -y python-dev python-pip python-nose gcc g++ git gfortran vim
2.Anaconda安装
bash Anaconda2-4.3.1-Linux-x86_64.sh
然后
sudo gedit ~/.bashrc
在最后输入
export PATH="/home/wmy/anaconda2/bin:PATH"
export LD_LIBRARY_PATH="/home/wmy/anaconda2/lib:LD_LIBRARY_PATH"
关闭,输入
source ~/.bashrc
重启终端
3.安装pycharm
解压
tar xfz pycharm-community-2017.1.tar.gz
将解压完的文件夹移动到/usr/local目录
sudo mv pycharm-community-2017.1 /usr/local
进入文件夹的bin文件夹内
cd pycharm/bin/
运行sh文件安装
./pycharm.sh
创建Pycharm桌面快捷方式:
gedit /usr/share/applications/studio.desktop
在这个文件里面下如下代码:
[Desktop Entry]
Type=Application
Name=Pycharm
GenericName=Pycharm3
Comment=Pycharm3:The Python IDE
Exec=sh /opt/pycharm-community-2016.3.1/bin/pycharm.sh
Icon=/opt/pycharm-community-2016.3.1/bin/pycharm.png
Terminal=pycharm
Categories=Pycharm;
桌面会有图标,右键锁定
4.下载CUDA8.0
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
sudo apt update
sudo apt install cuda
将CUDA路径添加至环境变量 在终端输入:
sudo gedit /etc/bash.bashrc
在bash.bashrc文件中添加:
export CUDA_HOME=/usr/local/cuda-8.0
export PATH=/usr/local/cuda-8.0/bin{PATH:+:{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64{LD_LIBRARY_PATH:+:{LD_LIBRARY_PATH}}
之后
source gedit /etc/.bashrc即可 同样,在终端输入:
sudo gedit ~/.bashrc
在.bashrc中添加如上相同内容 (如果您使用的是zsh,在~/.zshrc添加即可)
测试 在终端输入:
nvcc -V
5.加速库cuDNN,先解压
sudo cp include/cudnn.h /usr/local/cuda-8.0/include/
sudo cp lib64/* /usr/local/cuda-8.0/lib64/
6.安装theano
conda install theano pygpu
配置theano文件 在终端中输入:
gedit ~/.theanorc
[global]
openmp=False
device = cuda0
floatX = float32
allow_input_downcast=True
[cuda]
root=/path/to/cuda/root
[lib]
cnmem = 0.8
[dnn]
library_path = /usr/local/cuda-8.0/lib64
include_path = /usr/local/cuda-8.0/include
[blas]
ldflags= -lopenblas
[nvcc]
fastmath = True
7.安装keras
pip install keras
修改默认keras后端 在终端中输入:
gedit ~/.keras/keras.json
{
"epsilon": 1e-07,
"floatx": "float32",
"image_data_format": "channels_first",
"backend": "theano"
}
在终端输入python
import theano
Using cuDNN version 5110 on context None
Mapped name None to device cuda0: GeForce GTX 970 (0000:01:00.0)
8.安装tensorflow1.1.0
pip install tensorflow_gpu-1.1.0rc0-cp27-none-linux_x86_64.whl
import tensorflow
全部搞定
