Python OpenCV-物体轮廓检测
发布时间
阅读量:
阅读量
cv2.findContours() 函数检测轮廓
import cv2
img = cv2.imread('C:/Users/Administrator/Desktop/New_Study/IMAGE/Pictures/1.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,contours,-1,(0,0,255),3)
=
cv2.imshow("img", img)
cv2.imwrite('C:/Users/Administrator/Desktop/New_Study/IMAGE/Pictures/findContours.jpg',img)
cv2.waitKey(0)
bash



2.cv2.Canny()函数检测轮廓
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('C:/Users/Administrator/Desktop/New_Study/IMAGE/Pictures/1.jpg',1)
edges = cv2.Canny(img,100,200)
#Matplotlib显示
plt.figure(figsize=(12,8))
plt.subplot(121)
plt.imshow(img,cmap='gray')
plt.title('original')
plt.xticks([])
plt.yticks([])
plt.subplot(122)
plt.imshow(edges,cmap='gray')
plt.title('edge')
plt.xticks([])
plt.yticks([])
plt.show()
#OpenCV 显示
img = cv2.imread('C:/Users/Administrator/Desktop/New_Study/IMAGE/Pictures/1.jpg')
edges = cv2.Canny(img,100,200)
cv2.namedWindow('img',cv2.WINDOW_NORMAL)
cv2.imshow('img',img)
cv2.namedWindow('edges',cv2.WINDOW_NORMAL)
cv2.imshow('edges',edges)
cv2.waitKey()
cv2.destroyAllWindows()
bash


不建议用Matplotlib展示图像,失真严重,效果如下图

特别注明
全部评论 (0)
还没有任何评论哟~
