Advertisement

Multi-View 3D Object Detection Network for Autonomous Driving

阅读量:

动机:

CC

CC

CC

CC

CC

CC

网络概览:

The network is constructed from two portions: one dedicated to 3D object proposal generation and another dedicated to multi-view feature fusion.

在这里插入图片描述

CC

CC

CC

CC

CC

CC

3D Point Cloud Representation

CC

CC

CC

CC

Bird’s Eye View Representation

在这里插入图片描述

CC

CC

CC

CC

CC

Front View Representation

在这里插入图片描述

We project the Point Cloud onto a cylinder plane to create a densely packed front-view map. Given a 3D point p = (x, y, z), whose coordinates pfv = (r, c) in the front view map can be calculated using

在这里插入图片描述

CC

CC

CC

CC

3D Proposal Network

在这里插入图片描述

CC

CC

在这里插入图片描述

CC

CC

CC

CC

Region-based Fusion Network

We develop a view-specific fusion network to effectively integrate features from multiple perspectives and jointly categorize object proposals and perform oriented 3D box regression.

在这里插入图片描述
  • Multi-View ROI Pooling

we apply ROI pooling to each viewpoint to generate feature vectors with equal dimensions. Given a 3D proposal p3D, we generate ROI regions across each viewpoint using

在这里插入图片描述

CC

CC

在这里插入图片描述

【CC】拿到了固定长度的向量

  • Deep Fusion

we propose a hierarchical deep learning-based feature fusion framework to fuse multi-modal and multi-view features in a hierarchical manner.

在这里插入图片描述

Consider a network consisting of L layers, where {Hl, l = 1 to L} represent feature transformation functions and ⊕ denotes a joining operation. For deep fusion purposes, we employ an element-wise average as the joining mechanism because it proves to be more flexible when integrated with drop-path training.

在这里插入图片描述

CC

CC

  • Oriented 3D Box Regression

CC

CC

CC

  • Network Regularization

CC

CC

CC

讨论

在这里插入图片描述

全部评论 (0)

还没有任何评论哟~