Advertisement

KDD会议的研究领域

阅读量:

总体来说,在sigkdd这一领域内对当前主要研究方向进行了深入分析,并可以看出这些方向在数据挖掘领域的应用前景非常广阔。

具体罗列如下

2012年,KDD会议的研究主题包括以下各方面

关联分析方法(association analysis methods)
分类与回归分析算法的具体实现(classification and regression methods' specific implementations)
半监督学习方法(semi-supervised learning techniques)
聚类分析方法(clustering approaches)
矩阵分解技术(matrix factorization techniques)
迁移学习与多任务学习方法(transfer and multi-task learning strategies)
特征选择策略(feature selection methodologies)
社交网络分析(analysis of social networks)
图数据挖掘技术(graph data mining techniques)
时空数据分析的具体技术(temporal and spatial data analysis techniques)
可扩展性优化方法(scalability optimization methods)
隐私保护措施(privacy preservation measures)
安全防护策略(security protection strategies)
可视化展示技术(visualization technologies)
文本分析模型(text analysis frameworks)
网页挖掘算法(web mining algorithms)
移动数据挖掘方法(mining mobile data approaches)
推荐系统优化策略(recommender system optimization strategies)
生物信息学数据分析技术(bioinformatics data analysis techniques)
电子商务行为建模方法(e-commerce behavior modeling methods)
在线广告效果评估策略(online advertising performance evaluation strategies)
异常检测算法改进方案 (anomaly detection algorithm improvement schemes)
大规模数据挖掘关键技术 (key technologies for big data knowledge discovery)

这些不同主题的论文,在会议期间内按照不同的主题分成若干个分会(session)。今年的session涵盖了数据挖掘已有的主要分支。

Research Session - A1: PageRank plus social networks
Research Session - A2: Pattern mining techniques
Research Session - A3: Probabilistic models are extensively explored
Research Session - A4: Supervised learning is a key component
Industry/Govt Track - A5: Mobile computing applications are examined in depth

Research Session - B1: Social看法
Research Session - B2: 时间序列分析
Research Session - B3: 矩阵与张量
Research Session - B4: 无监督学习
Industry/Govt Track - B5: 社交网络分析

Research Session 1 (C1) focuses on social network analysis and web-based data mining.
Session 2 explores event-driven data analysis techniques.
Research Session 3 is dedicated to matrix approximation methodologies.
Session 4 delves into supervised learning methodologies involving multiple variables.
Government and industry tracks highlight advancements in web application development.

Research Session - A1: 社区挖掘
Research Session - A2: 序列与时空模式分析
Research Session - A3: 个性化与推荐系统设计
Research Session - A4: 监督学习及其辅助信息应用
Industry/Govt Track - A5: 计算广告技术研究

Research Overview session will feature discussions on various topics including debates and Questions and Answers sessions.
The session will focus on advanced techniques for Outlier and Intrusion Detection Analysis.
A dedicated process will be implemented for the Feature Extraction to ensure optimal performance.
The session will explore methods related to Closest Neighbors Analysis.
The Industry/Government Track will include a comprehensive Business Analytics Tracking System.

Study Group Meeting 1 (C1): Collaboration Teams, Industry Trends, and Social Analysis
Study Group Meeting 2 (C2): Privacy Protection
Study Group Meeting 3 (C3): Applications of Supervised Learning
Study Group Meeting 4 (C4): Data Extraction Techniques
Industry & Government Track 5 (C5): Advances in Medical Informatics

Research Session - A1: 广告与视频推荐相关内容
Research Session - A2: 图挖掘技术
Research Session - A3: 推荐系统
Research Session - A4: 聚类分析方法
Industry/Govt Track - A5: 智能系统领域

Research Session - B1: 关键词与文献, Research Session - B2: 模式识别, Research Session - B3: 空间与模式识别

全部评论 (0)

还没有任何评论哟~