Advertisement

mmdetection训练faster-rcnn 和cascade mask-rcnn

阅读量:

1. 训练faster-rcnn:

2. 训练cascade mask-rcnn:

修改 cascade_mask_rcnn_r50_fpn.py文件中所有的num_classes为你要训练的数据集的类别(不包括背景)

然后在configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py中添加数据集的设置

复制代码
 _base_ = [

    
     '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
    
     '../_base_/datasets/coco_instance.py',
    
     '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
    
 ]
    
  
    
  
    
 # 修改数据集相关设置
    
 dataset_type = 'COCODataset'
    
 classes = ('crack', 'hole',)
    
 data = dict(
    
     train=dict(
    
     img_prefix='E:/jt/mmdetection/data/coco/defect_dataset/train/',
    
     classes=classes,
    
     ann_file='E:/jt/mmdetection/data/coco/defect_dataset/train/annotations_coco.json'),
    
     val=dict(
    
     img_prefix='E:/jt/mmdetection/data/coco/defect_dataset/val/',
    
     classes=classes,
    
     ann_file='E:/jt/mmdetection/data/coco/defect_dataset/val/annotations_coco.json'),
    
     test=dict(
    
     img_prefix='E:/jt/mmdetection/data/coco/defect_dataset/val/',
    
     classes=classes,
    
     ann_file='E:/jt/mmdetection/data/coco/defect_dataset/val/annotations_coco.json'))
    
  
    
 # 预训练权重???

最后 run

复制代码
    python tools/train.py configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py

ok。

faster-rcnn 同理

全部评论 (0)

还没有任何评论哟~